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Resumen

SARS-CoV-2 es un coronavirus de ARN que causa infecciones respiratorias como la actual pandemia de CO-
VID-19. Los sistemas de salud combaten esta infección con cuidados paliativos; sin embargo, existen pocos 
tratamientos específi cos para este patógeno. Este contexto representa la posibilidad de buscar tratamientos alter-
nativos, como el uso de moléculas naturales. El objetivo de este estudio fue determinar in silico la interacción 
de péptidos de plantas aromáticas con proteínas específi cas de SARS-CoV-2 que no comprometan la respuesta 
inmune. Se procesaron quinientos ochenta y tres péptidos con menos de 30 aminoácidos de Thymus vulgaris L., 
Cymbopogon citratus, Salvia offi  cinalis, Ocimum basilicum L y Zingiber offi  cinale. La metodología aplicó fi ltros 
de acuerdo a los más altos puntajes de docking molecular para encontrar 20 péptidos por cada planta. Los péptidos 
registraron interacción molecular fuerte de los sitios activos de las proteínas Spike RBD, S2 y Nsp4, empleando 
una energía de menos de –150 kcal/mol. La proteína Nsp4 mostró la mayor interacción con todas las especies. El 
35% y el 65% de estos péptidos se registraron con baja activación de la respuesta inmune a través de la antigenici-
dad, puntuación inferior a 0,5 y ausencia de alergenicidad. Estos resultados indican el uso de moléculas de origen 
vegetal que pueden implementarse en el consumo para combatir la replicación viral del SARS-CoV-2.
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Abstract

SARS-CoV-2 is an RNA coronavirus that causes respiratory infections as the current COVID-19 pandemic. The 
health systems combat this infection with palliative care; however, there are few specifi c treatments for this patho-
gen. This context represents the possibility of searching for alternative treatments, such as using molecules from 
natural products. Our main objective was the in silico study of aromatic plant peptides and their interaction with 
specifi c proteins of SARS-CoV-2 that do not compromise the immune response. Five hundred eighty-three pep-
tides with less than 30 amino acids from Thymus vulgaris L., Cymbopogon citratus, Salvia offi  cinalis, Ocimum 

basilicum L, and Zingiber offi  cinale were processed. The methodology applied fi lters according to the highest 
molecular docking scores to fi nd 20 peptides for each plant species. The peptides show solid molecular interaction 
of the Spike RBD, S2, and Nsp4 proteins’ active sites, using less than –150 kcal/mol energy. Nsp4 protein exposes 
the most interaction with all species. 35 and 65% of these peptides were recorded with low activation of the immu-
ne response through antigenicity, score below 0.5, and absence of allergenicity. These results indicate the use of 
plant-derived molecules that can be implemented in consumption to combat the viral replication of SARS-CoV-2.

Keywords: Aromatic plants, peptides, SARS-CoV-2, molecular docking.

Introduction.

SARS-CoV-2 is an RNA coronavirus that deteriorates 
respiratory conditions observed during the current CO-
VID-19 pandemic, which has claimed nearly 4.55 mi-
llion deaths globally between 2020 and 2021 (1,2). The 
course of the infection causes infl ammation response 

deregulation derived in chronic conditions (1), showing 

a sanitary emergency that requires rapid intervention. In 

some cases, the conventional drugs for intervention in 

this pathology are associated with side eff ects such as 

immune system activation and the presence of refrac-

tory patients; at the same time, SARS-CoV-2 genera-

tes pharmacological resistance (3). On the other hand, 

using the vaccine strategy is a preventive approach with 

side-eff ects reports and variation in availability due to 

government investment (4,5). This scenery makes it 

necessary to search for new alternative treatments that 

aff ect the viral life cycle without generating an eff ect on 

the host's immune response and that it is easily acqui-

red. 

Phytomedicines represent an alternative that uses plants 

and their extracts to combat pathogens (6). Among the-

se, aromatic plants attract attention due to the bioactivi-

ty reports and their conventional use for several diseases 

(7,8). Plants such as ginger (Zingiber offi  cinale), basil 

(Ocimum basilicum L), sage (Salvia offi  cinalis), le-

mongrass (Cymbopogon citratus), and thyme (Thymus 

vulgaris L.) have been reported with antimicrobial and 

antiviral activity (9,10). In addition, some natural mole-

cules, such as peptides of aromatic plants, have shown 

activity against other viruses such as HIV, Herpes virus, 

and dengue virus, among others (11). The peptide-based 

drug, typically of 2-50 amino acid residues, has several 

underlying biological characteristics such as better bio-

availability, exuberant biological affi  nity or specifi city 

to a particular target, and low toxicity represented by 

low immunogenic responses (12,13), highlighting them 

above a conventional drug. For the case of ginger, the 

approach in silico assays has shown compounds that 

interfere with the viability of SARS-CoV-2 (14,15). 

However, the interaction between natural peptides and 

components of the host's immune system remained to 

be determined.

In silico analysis of molecules allows for characterizing 

their structures with robustness systems and studying 

their interactions with proteins of interest of pathogens 

(16). Although there is a low percentage of characteri-

zed peptides from aromatic plants in this scenery, the 

main of this research was to evaluate with advanced 

bioinformatics tools the anti-SARS-CoV-2 activity and 

immune reactivity of small peptides from Ginger, basil, 

sage, lemongrass, and thyme. Furthermore, this study 
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allows us to defi ne new ways to analyze combat alter-

natives for COVID-19.

Materials and methods.

Identifi cation of peptides in plants.

A descriptive and systematic review was carried out to 

identify peptides with antiviral activity reports, using a 

range of 2 years (2019-2021) as a selection fi lter. Addi-

tionally, the peptide sequences were verifi ed with the 

Cybase platform (http://www.cybase.org.au/index.php, 

17), which collects cyclic-type peptides with antiviral 

and antimicrobial activity. Small peptides (less than 30 

amino acids) sequences were taken to be used as query 

sequences in the protein-protein BlastP (https://blast.

ncbi.nlm.nih.gov/Blast.cgi) from the NCBI (National 

Center Biotechnology.). The alignments of these se-

quences with the organisms in the standard section: Z. 

offi  cinale (Taxid:94328), O. basilicum (Taxid:39350), 

S. offi  cinalis (Taxid:38868), C. citratus (Taxid:66014), 

and T. vulgaris (Taxid:49992) were executed. In Blas-

tP, the peptides predicted and, with a report in proteins, 

were selected using the best percentage of identity.

3D structure and anti-viral activity by docking mo-

lecular.

The 3D structures to evaluate beta sheets or alpha 

chains were executed using the RPBS Web Portal PEP-

FOLD 3.5 (https://mobyle.rpbs.univ-paris-diderot.fr/

cgi-bin/portal.py#forms:PEP-FOLD3, 18), using 100 

simulations as the default value. The molecular docking 

allows for studying the Gibbs energy in the interaction. 

For this purpose, the nCOV Docking server (https://

ncov.schanglab.org.cn/, 19) was used to select the 

Spike RBD domain and S2 subunit, and Nsp4 proteins 

as target proteins. We use the fi lter Gibbs energy >150 

kcal/mol to select 20 peptides per plant, prioritizing the 

Spike RBD protein. Finally, molecular coupling was 

verifi ed with the DINC-COVID Web Server platform 

(http://dinc-covid.kavrakilab.org/, 20). The ligand effi  -

ciency was calculated with docking molecular score / 

molecular mass.

Physicochemical characterization and immune res-

ponse of peptides.

The physicochemical properties were identifi ed using 

the bioinformatics tool ProtParam Tool (https://web.

expasy.org/protparam/) from Expasy to determine the 

molecular weight, size, isoelectric potential, amino acid 

composition, atomic composition, half-life, instability 

index, allopathic index, and hydropathicity. Peptide so-

lubility was determined using the SCRATCH Protein 

Predictor (http://scratch.proteomics.ics.uci.edu/) with 

the SOLpro function. Immune response was evalua-

ted at two levels: Antigenicity with the ANTI GENpro 

function of SCRATCH Protein Predictor and allergeni-

city prediction using AllerTOP V.2.0 (https://ddg-phar-

mfac.net/AllergenFP/). 

Results.

Search and selection of peptides from plants.

SARS-CoV-2 infection has developed with diff erent 

epidemiological dynamics since the outbreak of the 

COVID-19 pandemic. The transmission of the infection 

has been aff ected by government control systems that 

incorporate vaccination status and self-care preven-

tion measures in developing countries (4). In Colom-

bia, four contagion peaks were detected between 2020 

and 2022 (Fig. 1A). This scenario was the starting po-

int for the search for pathological combat alternatives 

that deal with the biology of the pathogen. In this study, 

the molecular interaction between virus proteins with 

molecules of natural origin was sought, looking for the 

inactivation of the viral pathological synapse with the 

cells of the human system (21). We focus on the S2, 

Spike, and Nsp4 proteins found in the capsid’s external 

structure (Fig. 1B) and facilitate interaction with angio-

tensin receptors. Initially, a search of peptide sequen-

ces in 5 aromatic plants, Z. offi  cinale, O. basilicum, S. 

offi  cinalis, C. citratus and T. vulgaris was carried out 

using 19 scientifi c articles. These sequences had anti-

microbial activity reported in research and verifi ed in 

Cybase. Using the NCBI online alignment tool (FIG. 

1C), 583 peptides were found (22-38), with more than 

80 sequences with a predicted structure for each plant 

(FIG. 1D) between 5 and 30 amino acids in length. The 

peptides were then characterized by their three-dimen-

sional structure using homology modeling following 

the greedy algorithm (39) (Fig. 1C). This was to esta-

blish a molecular binding with viral proteins in the ncov 

web (40). The results show diff erent confi gurations of 

the peptides found with beta sheets, alpha helices, and 

linear confi gurations, indicating folding possibilities 

that increase the molecular interaction capacity (41) 

(Fig. 1E).
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Figure 1.  Infection and case of SARS-CoV-2 and selection of peptides. A. Number of cases of COVID-19 infection in 

Colombia reported by endcoronavirus.org/. B. Viral structure of SARS-CoV-2 that shows the antigenic proteins of interest. 

C. Workfl ow of this study to search and characterization of bioactivity. D. Number of peptides by the plant. E. Representative 

structure of peptides by the plant.
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The molecular binding test revealed Gibbs energy va-

lues in a range between 0 and -350 (Supplementary 1). 

The RBD domain extra-capsid of Spike protein SARS-

CoV-2 report six aa (L455, F486, Q493, S494, N501, 

and Y505) of solid interaction with ACE receptor in 

mammal cells. Using the Shan Chang lab software 

algorithm, our results show a fi rm binding with these 

amino acids; for example, peptide # 3 of Z. offi  cinale, 

supports the possible interference of viral entry to host 

cells (42). Spike protein also presents other subunits to 

interact with ACE2 receptor, such as S2 subunit or fu-

sion fragment, which after proteolytic cleavage S1-S2 

induces the viral and host cell plasma membrane fusion. 

Our results show interaction with the connector domain 

(CD, residues 1037–1068) of S2, revealing alteration of 

protein fusion (42).

On the other hand, Nsp4 protein's role in viral replica-

tion report four predicted transmembrane domains. The 

peptides show strong interaction with cleavage sites to 

produce Nsp4-Nsp16, which could aff ect viral replica-

tion (43). Sequences with a binding score greater than 

-150 were discarded because their interaction was clas-

sifi ed as weak. Twenty peptides per plant were selected 

for presenting more signifi cant interaction. As shown 

by the heat maps in fi gure 2A, the Nsp4 protein is the 

one that interacts the most with most of the peptides of 

all plant species. Likewise, the peptides of the Z. offi  -

cinale species are the ones that generate the most mo-

lecular union with all the proteins. For its part, the S2 

protein reports less interaction with most peptides. The 

three-dimensional structure of the molecular docking 

indicates that the peptides have an affi  nity for the active 

sites of the target proteins (Fig. 2B, C, and D). These 

data were confi rmed with the DINC-COVID Web ser-

ver, where the correspondence between values was de-

tected. This result suggests that viral replication proces-

ses could interfere. Physicochemical characterization of 

these molecules showed a solubility score between 0.5 

to 0.9, a molecular weight of 570 to 2000 kDa, and as 

we expected, the half-life shows a range of 1 to 100 h 

in the mammal systems (Supplementary 2), according 

to high bioavailability reported to this molecules type 

(12,13). The highest half-life values that indicate the 

degradation time in the mammalian system have low 

interaction with the Nsp4 protein. However, some small 

peptides, such as #4 from O. basilicum have a half-life 

of more than 20 hours in mammalian cells, indicating 

an adequate period of bioactivity that could combat the 

virus. Next, the antigenicity and allergenicity of the 

peptides were evaluated using the database comparison 

algorithm by Antigenicity with ANTI GENpro function 

in SCRATCH Protein Predictor and AllerTOP V.2.0 

(44,45). For the plant species Z. offi  cinale, O. basili-

cum, S. offi  cinalis, C. citratus, and T. vulgaris, 14, 14, 

13, 12, and 11 peptides with antigenicity less than 0.5 

were found, respectively; of these sequences 10, 7, 5, 5, 

and 5 peptides are non-allergenic, respectively. These 

results show no predicted side eff ects for the peptides 

found.

Overall these results, and in contrast to those reported in 

the literature, show more potent binding energies with 

the viral target proteins studied in this study; for exam-

ple, Wong et al. found the peptide EDKGMMHQQRM-

MEKAMNIPRMCGTMQRKCRMS binds to the RBD 

domain of the Spike protein with an energy -207.146 

kcal/mol, which is relatively lower than our fi nding of 

the peptide IPCEDYVLACVFI that binds to the RBD 

domain of the Spike protein with the energy of -286.64 

kcal/mol (46). Concerning the antigenicity and allerge-

nicity scores, the possible secondary eff ects reported for 

some extracts of the before-mentioned plants are ex-

plained (47). In line with this fi nding, for future in vitro 

preclinical research experiments, purifi cation of peptide 

extracts are necessary as has been carried out by (8) or 

through molecular techniques such as western block to 

isolate specifi c molecules.

Discussion.

The outbreak of COVID-19 was declared a pande-

mic of international concern from 2019 to date (48). 
Current research has focused its eff orts on combating 

SARS-CoV-2 in two ways: 1) prevention of contact 

with biosecurity standards or vaccines application in 

the community (5, 49), and 2) in the case of patients, 

the use of palliative care and antiviral treatments (50, 

51). Some antiviral drugs, such as hydroxychloroqui-

ne and chloroquine have been examined potentially to 

suppress SARS-CoV-2 replication (52). However, this 

fact represents diffi  culty in accessing the distribution 

and application of the active principle of drug cause 

due to the little government investment to include in the 

anti-SARS-CoV-2 public health plan, a context more 

recurrent in LATAM countries such as Colombia (53). 

According to this, new strategies more cost-eff ectively 

have been explored (54). Natural products of plant ori-

gin, as secondary metabolites and their derivatives, re-

ported great chemical diversity and many therapeutic 

applications as antiviral potential (55). Therefore, these 

molecules as peptides from plants have been a trending 

topic in bioprospecting research. This point is confi r-

med by the anti-SARS-CoV-2 publications increasing 
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Figure 2. Molecular interaction level and immune response. A. Heat maps that show the Gibbs energy score result of 

docking molecular between 20 peptides by plant and Spike RBD domain and S2 subunit, and Nsp4 protein of SARS-CoV-2. 

Representative structure of docking molecular with Spike RBD (B), S2 (C), and Nsp4 (D). E. Score of antigenicity and aller-

genicity of peptides by the plant. 

Rev. Asoc. Col. Cienc.(Col.), 2022; 34: 93-104
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during 2020 and 2021 (49). 

The speciation of aromatic plants against predators 

such as insects has generated a highly active secondary 

metabolism with many peptides (57). This study found 

highly favorable results for some peptides from the fi ve 
selected aromatic plants. The domains of SARS-CoV-2 
proteins were selected due to their positive antece-
dents with the peptide-based inhibitor as a fi rst-in-class 
treatment for COVID-19. We generally perceive higher 
binding with the Nsp4 protein, medium binding with 
the RBD protein, and low binding with the S2 protein. 
This similar trend in the results binding between plants 
selected with the three SARS-CoV-2 domains can be 
explained by an association between aromatic plant 
synthesis pathways that have been evolutionarily con-
served (57). The peptides that yielded an excellent blast 

match in NCBI, mainly denoted a report by predictive 
algorithm, and a few matched with reported proteins, 
which made it impossible to use control sequences in 
molecular docking and antigenicity experiments. Con-
sidering the diff erent molecular masses of peptides in 
the range of 525.69 and 2978.4 kDa (Supplementary 2), 
we evaluated the ligand effi  ciency of all peptides with 
the fi rst model of docking molecular that show higher 
binding, Nsp4. The heat map in table 1 shows that small 
peptides have more ligand effi  ciency; for example, pep-
tide # 1 of C. citratus with fi ve amino acids results in 
-0.56 score of ligand effi  ciency; this is probably due to 
more possibility of chemical interaction with exposed 
radical groups. Mostly, this analysis exhibit S. offi  cina-

lis with more ligand effi  ciency than other plants, accor-
ding to the reports of its antiviral activity (58).

Table 1. Ligand effi  ciency between peptides and Nsp4. �
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Computer-aided virtual screening approaches play an 
essential role as cost-eff ective and take less time than 
experimental studies to reach the drug to the market 
(59). Molecular docking used to identify peptides with 
binding affi  nity to three target receptors of SARS-
CoV-2 was similar to other studies using in silico tools 
(59, 60). For example, peptides with the stage of deve-
lopment theoretical such as Inhibitors 1-4 peptide, have 
shown excellent results in targeting SARS-CoV-2 RDB 

(60); at the same time, this receptor also has been tar-
geted by SBP1 (61) and Spikeplug (62) peptides in a 
preclinical advance. Our results show an average free 
energy similar to DRAMP00877 and DRAMP02333 
peptides with −245.612 and −243.441 KJ/mol, respecti-

vely (63). We expect the inclusion of the peptides found 

in this study as modulators phytochemicals in future 

research causes interference in a downstream signaling 

process viral, focusing on preventing the SARS-CoV-2 
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entry into the host cell through protein inhibition (64). 

Out of 583 screened ligands, some compounds have 

low binding affi  nity, probably due to low noncovalent 

binding according to their structure.

On the other hand, most of the reports of binding to 

SARS-CoV-2 proteins focus on molecular docking (65); 

however, few extend to determining immunogenicity. 

This study's selection of non-allergenic peptides with 

low antigenicity demonstrates bioactive potential, pro-

bably with low side eff ects. The safety of these peptides 

should be evaluated in future in vitro studies. Likewise, 

other in silico tests could be included to determine the 

antigenic presentation of the peptides found. The study 

of the immunogenicity of the peptides with the highest 

molecular docking score allows the positioning of an 

innovative methodology with the inclusion of checkpo-

ints to select reactivity and safety.

Conclusion

The computational analysis of this research defi ned 
new bioactivity for peptides predicted found in align-
ment with the plants of study. The interaction between 
SARS-CoV-2 proteins Spike RBD domain and S2 
subunit, and Nsp4 with plant peptides indicated a hig-
her binding potential that could interfere with the viral 
replication. Our fi ndings show that some peptides are 
associated with scores of antigenicity and allergenicity; 
in this line to future directions for in vitro experiments, 
the molecule's purifi cation is necessary. This pre-clini-
cal study represents an alternative that could be inclu-

ded to combat the COVID-19 pandemic.
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