Abstract
Introduction: Advances in bioinformatics techniques have allowed approaches and improvements in clinical diagnoses, correlating genotype - phenotype and allowing the approach to personalized therapy. Objective: Inorder to perform the molecular characterization and gene expression in a patient with complex clinical manifes-tations through bioinformatics techniques, complete exome sequencing was performed by a peripheral bloodsample to a woman with facial dysmorphisms and developmental disorders. Material and methods: We analyzedthe data obtained by in-silico analysis, using programs such as SIFT, Mutation Tester, UMD and Provean, to de-termine the clinical significance of the found variants and GeneMania program was used to determine gene inte-ractions. Results: 3 variants were found in the genes SEMA4A, PTPN11 and RAB40A, associated with Retinitis pigmentosa 35, Noonan Syndrome and Mental Retardation Syndrome Martin-Probs, respectively; according tothe predictive softwares, in the first case an apparently benign clinical meaning, and in the last two genes a clinicalpathogenic meaning. The analysis of gene networks revealed alterations in biological functions such as signalingmediated by phosphatidylinositol, response to the fibroblastic growth factor, neutrophin signaling pathway and blood vessel morphogenesis that allowed us to explain a large part of the observed symptomatology. Conclusion: The personalized analysis of complex pathologies through the use of clinical, genomic and bioinformatic tool shas allowed a signifi cant advance in techniques for processing and analyzing data, benefi ting scientifi c studies thatallow the approach to a correct diagnosis and adequate genetic counseling.
References
López Aparicio L, Santiesteban-Toca C, Giráldez Rojo R. Inferencia de redes de asociación de genes empleando algoritmos genéticos y topología de grafos. Rev cuba cienc informat.2017; 11(3): 21-35.
Santillán-Garzón S, Diego-Álvarez D, Buades C, Romera-López A, Pérez-Carbonero L, Valero-Hervás et al. Diagnóstico Molecular de Enfermedades genéticas: Del diagnóstico genético al diagnóstico genómico con la secuenciación masiva. Rev Med Clin Las Condes. 2015; 26(4): 458-469.
Costa L, Argibay P. Metodología de la investigación avanzada: introducción al estudio de los sistemas complejos y sus aplicaciones. Parte VII: Estudios de interacción de genes (epistasis y aprendizaje automático). Rev. Hosp. Ital. B.Aires 2014; 34(1): 27-30.
Dameron O, Bettembourg,C, Le Meur N. Measuring the Evolution of Ontology Complexity: The Gene Ontology Case Study .PLoS ONE. 2013; 8 (10): 1-18
Rodríguez A, Satizabal JM, Sánchez A, Montoya J, García-Vallejo F. Complejidad y construcción de una red de genes asociados a preeclampsia. Rev. Asoc. Col. Cienc (Col.). 2014; 26:38-48
Genetaq. Bioinformática para no iniciados: Capítulo V. 2016 [Internet]. [Consultado 12 Marzo 2019].Disponible en: http://genetaq.com/es/blog/bioinformatica-para-no-iniciados-capitulo-v
http://provean.jcvi.org/index.php
http://www.informatics.jax.org/vocab/gene_ontology/GO:0008150).
Sen P, Bhargava A, George R, Ve Ramesh S, Hemamalini A, Prema R, G, et al. Prevalence of retinitis pigmentosa in South Indian population aged above 40 years. Ophthalmic Epidemiol. 2008; 15: 279-281.
Xu L, Hu L, Ma K, Li J, Jonas JB. Prevalence of retinitis pigmentosa in urban and rural adult Chinese: The Beijing Eye Study. Eur J Ophthalmol. 2006, 16: 865-866.
MalaCards. Retinitis pigmentosa 35. 2017. Disponible en: https://www.malacards.org/card/retinitis_pigmentosa_35
Bryant L, Lozynska O, Han G, Morgan JIW, Gai X, Maguire A. et al. On Variants and disease-causing mutations: Case studies of SEMA4A variant identified in inherited blindness. Ophthalmic Genet. 2018; 39(1): 144-146.
Gonzales-Huerta N, Gonzales- Huerta LM, Rivera-Vega M, Mendoza E, Marquez L, Cuevas S. Análisis molecular del gen PTPN11 en el sindrome de Noonan. Rev Med Hosp Gen Mex. 2008; 71 (3): 141-145
Lloreda- García JM, Martínez Aedo MJ, Tarttaglia M, López-Siguero JP. Síndrome de Noonan por mutación en el gen PTPN11. An pediatr. 2006;65(6):525-651
Tidyman WE, Rauen KA. Expansion of the RASopathies. Curr Genet Med Rep. 2016;4(3):57-64.
Tartaglia M, Kalidas K, Shaw A, Song X, Musat D, Van Der Burgt I, et al. PTPN11 mutations in Noona Syndrome: Molecular Spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am J Hum Genet. 2002; 70(6):1555-63.
Clinvar. rs28933386. 2017 [Internet]. [Consultado 12 marzo 2019]. Disponible en: https://www.ncbi.nlm.nih.gov/clinvar/variation/13326/
Martin D, Probst F, Camper S, Petty E. Characterization and genetic mapping of a new X linked deafness syndrome. BMJ Journals. 2000; 37:836-841
Probst F, Hedera P, Sclafani A, Pompi M, Neri G, Tyson J et al. Skewed X-Inactivation in carriers establishes linkage in an X-linked deafness-mental retardation syndrome. Am J Med Genet. 2004; 131(A):209.212
Wang W, Xu S, Yin M, Jin ZG. Essential roles of Gab1 tyrosine phosphorylation in growth factor-mediated signaling and angiogenesis. Int J Cardiol. 2014; 181:180-4.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2020 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS