revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Supplementary Files

PDF. Pag, 10-17 (Español (España))

Keywords

Computational Biology
type III glycogen storage disease
glycogenolysis Biología Computacional
enfermedad del almacenamiento de glucógeno de tipo III
glucogenólisis
secuenciación de exoma completo
sistema de la enzima desramificadora del glucógeno
variantes. (DeCS)
whole-exome sequencing
glycogen debranching enzyme system
variants. (WES), (DeCs)

How to Cite

Moreno-Giraldo, L. J. ., Estela-Zape, J. L. ., Arturo-Terranova, D. ., & Satizábal-Soto, J. M. . (2022). Clinical, molecular and bioinformatic analysis a patient with Cori-Forbes disease in the Southwest of Colombia. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(34), 10–17. https://doi.org/10.47499/revistaaccb.v1i34.252

Abstract

Introduction: Glycogen storage disease type III (GSDIII) or Cori Forbes disease is a disorder of the glycogenolysis process caused by variants of the AGL gene that encodes the glycogen debranching enzyme; It is located on chromosome 1p21.2 and its alteration generate an incomplete degradation of glycogen, leading to an accumulation of borderline dextrin in target organs, causing organomegaly and dysfunction. Objective: To characterize at the molecular level an elderly male lactating patient from southwestern Colombia with a clinical, biochemical diagnosis suspected of GSDIII. Materials and methods: An elderly male infant with a history of bronchopulmonary dysplasia, acute respiratory infection, gastroesophageal reflux, hepatomegaly, and lactose intolerance. A molecular study was performed by whole exome sequencing; the reported variants were evaluated by prediction software such as Mutation Taster, PROVEAN, UMD-Predictor, POLYPHEN, SIFT, Human Splicing Finder. Finally, a gene interaction network was performed using the GeneMania program to determine close gene associations. Results: 3 heterozygous variants located in the AGL gene were identified: p.Arg910 * that causes loss of the amyl-1,6 glucosidase domain and the glycogen-binding domain, and the variants p.Trp373Cys, p.Asn565 in the protein. The analysis of clinical significance by means of in-silico methods determined a pathogenic classification for all the variants. The interaction network will observe associations between the AGL gene and the FOXA2, PPP1R3B, NHLRC1 and GCK genes, which are related to metabolic processes. Conclusion: an initial clinical suspicion, through a good clinical history and the relevance of directed biochemical-metabolic-genomic studies, allows us to provide a correct diagnosis, treatment, and follow-up, bringing us closer to precision medicine.

https://doi.org/10.47499/revistaaccb.v1i34.252

References

Ellingwood S, Cheng A. (2018). Biochemical and Clinical Aspects of Glycogen Storage Diseases. J Endocrinol; 238 (3): 131-141. doi: 10.1530/JOE-18-0120

https://doi.org/10.1530/JOE-18-0120

Kanungo S, Wells K, Tribett T, El-Gharbawy A. (2018). Glycogen metabolism and glycogen storage disorders. Ann Transl Med; 6 (24): 474. doi: 10.21037/atm.2018.10.59. PMID: 30740405; PMCID: PMC6331362.

https://doi.org/10.21037/atm.2018.10.59

Mantilla C, Toro M, Sepúlveda ME, Insuasty M, Di Filippo D, Lopez A et al (2018). Enfermedad por almacenamiento de glucógeno de tipo III en pacientes colombianos: caracterización clínica y molecular. Biomédica; (38): 30-42. doi: https://doi.org/10.7705/biomedica.v38i0.3454

https://doi.org/10.7705/biomedica.v38i0.3454

Sentner CP, Hoogeveen IJ, Weinstein DA, Santer R, Murphy E, McKiernan P et al (2016). Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J Heredar Metab Dis; 39 (5): 697-704. doi: 10.1007 / s10545-016-9932-2

https://doi.org/10.1007/s10545-016-9932-2

Rousseau-Nepton I, Okubo M, Grabs R, FORGE canada Consortium, Mitchell J, Polychronakos C et al (2015) A founder AGL mutation causing glycogen storage disease type IIIa in Inuit identified through whole-exome sequencing: A case series. CMAJ;187:E68-73. https://doi.org/10.1503/ cmaj.140840

https://doi.org/10.1503/cmaj.140840

Zhang Y, Xu M, Chen, X, Yan A, Zhang G, Liu Z et al (2018). Genetic analysis and clinical assessment of four patients with Glycogen Storage Disease Type IIIa in China. BMC Med Genet; (19)54 https://doi.org/10.1186/s12881-018-0560-6

https://doi.org/10.1186/s12881-018-0560-6

Dagli A, Sentner CP, Weinstein DA (2010). Glycogen Storage Disease Type III. En: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews®. https://www.ncbi.nlm.nih.gov/books/NBK26372/

Quackenbush D, Devito J, Garibaldi L, Buryk M. (2018). Late presentation of glycogen storage disease types Ia and III in children with short stature and hepatomegaly. J Pediatr Endocrinol Metab; 31 (4): 473-478. doi:10.1515/jpem-2017-0209

https://doi.org/10.1515/jpem-2017-0209

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med;17(5):405-424. doi:10.1038/gim.2015.30

https://doi.org/10.1038/gim.2015.30

Kishnani PS, Austin SL, Arn P, Bali D, Boney A, Case L et al (2010). Glycogen storage disease type III diagnosis and management guidelines. Genet Med; 12:446-63. https://doi.org/10.1097/GIM.0b013e3181e655b6

https://doi.org/10.1097/GIM.0b013e3181e655b6

Shen J, Bao Y, Liu H.-M, Lee P, Leonard V, Chen Y. (1996). Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J. Clin. Invest; 98: 352-357. doi: 10.1172 / JCI118799

https://doi.org/10.1172/JCI118799

Cheng A, Zhang M, Okubo M,Omichi K, Saltiel A. (2009). Distinct mutations in the glycogen debranching enzyme found in glycogen storage disease type III lead to impairment in diverse cellular functions. Hum Mol Genet;18(11):2045-52. doi: 10.1093/hmg/ddp128.

https://doi.org/10.1093/hmg/ddp128

Lucchiari S, Donati MA, Melis D, Filocamo M, Parini R, Bresolin N et al. (2003). Mutational analysis of the AGL gene: Five novel mutations in GSD III patients. Hum Mutat; 22:337. https://doi.org/10.1002/humu.9177

https://doi.org/10.1002/humu.9177

Zhang L, Rubins N, Ahima R, Greenbaum L, Kaestner K. (2005). Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metabolism; 2(2) 141-148

https://doi.org/10.1016/j.cmet.2005.07.002

Mehta M. (2017). Elucidating the role of hepatic Ppp1r3b in glucose and lipid metabolism. Publicly Accessible Penn Dissertations. 2469

Ministerio de Salud y Protección Social. Resolución número 005265 de 2018. Listado de enfermedades huérfanas. Tomado de: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/resolucion-5265-de-2018.pdf

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...