revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

##plugins.themes.healthSciences.article.supplementaryFiles##

PDF. Pag, 81-92 ()

Keywords

Monkeypox virus
vaccine
multi-epitope
simulation Virus de la viruela del mono
vacuna
multiepítopo
simulación

How to Cite

Montenegro Oyola, C. F. ., Noguera Rosero, B. A. ., & García-López, J. P. . (2022). In silico analysis of a multi-epitope vaccine candidate against monkey pox using reverse vaccinology. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(34), 81–92. https://doi.org/10.47499/revistaaccb.v1i34.265

Abstract

Introduction. Monkey pox is a zoonotic infection with an increased global transmission rate during 2022, denoted epidemiological trouble in public health. Currently, the disease has no specific treatments available; thus, a preventive approach can be achieved through immunization. Objective. was to design in silico a vaccine applying advanced computational techniques using a multi-epitope construct of the Monkeypox virus. Materials and methods. Antigens were selected based on reports about proteins that cause the activation of cytotoxic T and B lymphocytes. The immunoinformatics assays were antigenicity, allergenicity, toxicity, MHC binding affinity, and IFN-γ stimulation. Results and discussion. Eight epitopes of the M1R, DNA polymerase, B6R, and A35R proteins of the M. virus showed a significant response for immune cells. Eleven epitopes with antigenicity >0.3, non-allergenic and non-toxic were chosen, of which 4 presented high affinity to T lymphocytes, 4 generated high activation of B lymphocytes, and 3 were associated with IFN-γ activation results. The in silico construction of the 509-amino acid vaccine candidate with high topological similarity registered mainly a negative charge, in addition to being soluble with an aliphatic index >80%, stable and particular with MHC activation and high molecular affinity with TLR-3, and also presented multi-antigenicity, similar to vaccines generated by this methodology with M. tuberculosis and Influenza. One-dose injection simulation of the molecular construct showed activation of T helper plasma cells for about 15 to 25 days and high expression of IFN-γ and IL-2 for eight days. Conclusion. These results indicate an excellent immunization process that could be potentiated with multi-dosing.

https://doi.org/10.47499/revistaaccb.v1i34.265

References

Peter OJ, Kumar S, Kumari N, Oguntolu FA, Oshinubi K, Musa R. Transmission dynamics of Monkeypox virus: a mathematical modelling approach. Model Earth Syst Environ. 2021; 1:1-12.

Nguyen PY, Ajisegiri WS, Costantino V, Chughtai AA, MacIntyre CR. Reemergence of Human Monkeypox and Declining Population Immunity in the Context of Urbanization, Nigeria, 2017-2020. Emerg Infect Dis. 2021; 27(4):1007.

https://doi.org/10.3201/203569

https://doi.org/10.3201/eid2704.203569

Durski KN, McCollum AM, Nakazawa Y, Petersen BW, Reynolds MG, Briand S, et al. Emergence of Monkeypox - West and Central Africa, 1970-2017. Morb Mortal Wkly Rep. 2018, 67(10):306.

https://doi.org/10.15585/mmwr.mm6710a5

Yinka-Ogunleye A, Aruna O, Dalhat M, Ogoina D, McCollum A, Disu Y, et al. Outbreak of human monkeypox in Nigeria in 2017-18: a clinical and epidemiological report. Lancet Infect Dis. 2019; 19(8):872-9.

https://doi.org/10.1016/S1473-3099(19)30294-4

Vaughan A, Aarons E, Astbury J, Brooks T, Chand M, Flegg P, et al. Human-to-Human Transmission of Monkeypox Virus, United Kingdom, October 2018. Emerg Infect Dis. 2020; 26(4):782.

https://doi.org/10.3201/eid2604.191164

Alakunle E, Moens U, Nchinda G, Okeke MI. Monkeypox Virus in Nigeria: Infection Biology, Epidemiology, and Evolution. Viruses. 2020, 12(11):1257.

https://doi.org/10.3390/v12111257

Saijo M, Ami Y, Suzaki Y, Nagata N, Iwata N, Hasegawa H, et al. Virulence and pathophysiology of the Congo Basin and West African strains of monkeypox virus in non-human primates. J Gen Virol. 2009, 90(9):2266-71.

https://doi.org/10.1099/vir.0.010207-0

Li Y, Olson VA, Laue T, Laker MT, Damon IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol. 2006; 36(3):194-203.

https://doi.org/10.1016/j.jcv.2006.03.012

Moxon ER, Siegrist CA. The next decade of vaccines: societal and scientific challenges. Lancet. 2011; 378(9788):348-59.

https://doi.org/10.1016/S0140-6736(11)60407-8

Guevara JR., Buelvas N, Suárez R, Peña L, Chirinos R., Pérez I, Urdaneta H. Esfuerzos para el desarrollo de vacunas y adyuvantes. Acta Bioclínica. 2018; 8(15), .

Céspedes PF, Cruz P, Co N. Modulación de la respuesta inmune durante la infección por virus distemper canino: implicancias terapéuticas y en el desarrollo de vacunas. Arch Med Vet. 2010; 42:15-28.

https://doi.org/10.4067/S0301-732X2010000200003

Oli AN, Obialor WO, Ifeanyichukwu MO, Odimegwu DC, Okoyeh JN, Emechebe GO, et al. Immunoinformatics and Vaccine Development: An Overview. ImmunoTargets Ther. 2020; 9:13.

https://doi.org/10.2147/ITT.S241064

González-Romo F, Picazo JJ. El desarrollo de nuevas vacunas. Enferm Infecc Microbiol Clin. 2015; 33(8):557-68.

https://doi.org/10.1016/j.eimc.2015.06.013

Bibi S, Ullah I, Zhu B, Adnan M, Liaqat R, Kong WB, et al. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci Reports 2021; 11(1):1-16.

https://doi.org/10.1038/s41598-020-80899-6

Dorosti H, Eslami M, Nezafat N, Fadaei F, Ghasemi Y. Designing self-assembled peptide nanovaccine against Streptococcus pneumoniae: An in silico strategy. Mol Cell Probes. 2019; 48:101446.

https://doi.org/10.1016/j.mcp.2019.101446

Jahangirian E, Jamal GA, Nouroozi M, Mohammadpour A. A reverse vaccinology and immunoinformatics approach for designing a multiepitope vaccine against SARS-CoV-2. Immunogenetics. 2021; 73(6):459-477.

https://doi.org/10.1007/s00251-021-01228-3

Tahir Ul Qamar M, Shokat Z, Muneer I, Ashfaq UA, Javed H, Anwar F, Bari A, Zahid B, Saari N. Multiepitope-Based Subunit Vaccine Design and Evaluation against Respiratory Syncytial Virus Using Reverse Vaccinology Approach. Vaccines. 2020; 8(2):288.

https://doi.org/10.3390/vaccines8020288

Abdi SAH, Ali A, Sayed SF, Abutahir, Ali A, Alam P. Multi-Epitope-Based Vaccine Candidate for Monkeypox: An In Silico Approach. Vaccines. 2022; 10(9):1564.

https://doi.org/10.3390/vaccines10091564

Seadawy MG, Zekri ARN, Saeed AA, San EJ, Ageez AM. Candidate Multi-Epitope Vaccine against Corona B.1.617 Lineage: In Silico Approach. Life. 2022; 12(11):1715.

https://doi.org/10.3390/life12111715

Zhang L. Multi-epitope vaccines: a promising strategy against tumors and viral infections. Nat Publ Gr. 2017; 15:182-4.

https://doi.org/10.1038/cmi.2017.92

Negahdaripour M, Nezafat N, Eslami M, Ghoshoon MB, Shoolian E, Najafipour S, et al. Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infect Genet Evol. 2018; 58:96-109.

https://doi.org/10.1016/j.meegid.2017.12.008

Gomez De la Rosa RJ, Rojas JP. Viruela del simio: ¿estamos frente a un riesgo de pandemia?. Historia de un viejo conocido. Interdiscip J Epidemiol Public Heal. 2022; 5(2).

https://doi.org/10.18041/2665-427X/ijeph.2.8803

Parker S, Buller RM. A review of experimental and natural infections of animals with monkeypox virus between 1958 and 2012. Future Virol. 2013; 8(2):129-157.

https://doi.org/10.2217/fvl.12.130

Payne AB, Ray LC, Cole MM, Canning M, Houck K, Shah HJ, et al. Reduced Risk for Mpox After Receipt of 1 or 2 Doses of JYNNEOS Vaccine Compared with Risk Among Unvaccinated Persons - 43 U.S. Jurisdictions, July 31-October 1, 2022. MMWR Morb Mortal Wkly Rep. 2022; 71(49):1560-1564.

https://doi.org/10.15585/mmwr.mm7149a5

Gregory DA, Trujillo M, Rushford C, Flury A, Kannoly S, San KM, et al. Genetic diversity and evolutionary convergence of cryptic SARS- CoV-2 lineages detected via wastewater sequencing. PLoS Pathog. 2022; 18(10):e1010636.

https://doi.org/10.1371/journal.ppat.1010636

Martinelli D. In silico vaccine design: A tutorial in immunoinformatics. Healthcare Analytics. 2022; 2:100044.doi.org/10.1016/j.health.2022.100044.

https://doi.org/10.1016/j.health.2022.100044

Dhanda SK, Mahajan S, Paul S, Yan Z, Kim H, Jespersen MC, et al. IEDB-AR: immune epitope database-analysis resource in 2019. Nucleic Acids Res. 2019; 2;47(W1):W502-W506.

https://doi.org/10.1093/nar/gkz452

Trevisan RO, Santos MM, Desidério CS, Alves LG, de Jesus Sousa T, de Castro Oliveira L, et al. In Silico Identification of New Targets for Diagnosis, Vaccine, and Drug Candidates against Trypanosoma cruzi. Dis Markers. 2020; 2020:9130719. doi: 10.1155/2020/9130719.

https://doi.org/10.1155/2020/9130719

Liu Y, Sun B, Pan J, Feng Y, Ye W, Xu J, et al. Construction and evaluation of DNA vaccine encoding Ebola virus glycoprotein fused with lysosome-associated membrane protein. Antiviral Res. 2021; 193:105141.

https://doi.org/10.1016/j.antiviral.2021.105141

Abesamis LMI, Aliping EGA, Armada FKGH, Danao MF, Del Valle PDB, Regencia ZJG, et al. In Silico Comparative Analysis of Predicted B Cell Epitopes against Dengue Virus (Serotypes 1-4) Isolated from the Philippines. Vaccines. 2022; 10(8):1259.

https://doi.org/10.3390/vaccines10081259

Song H, Josleyn N, Janosko K, Skinner J, Reeves RK, Cohen M, et al. Monkeypox virus infection of rhesus macaques induces massive expansion of natural killer cells but suppresses natural killer cell functions. PLoS One. 2013; 8(10):e77804.

https://doi.org/10.1371/journal.pone.0077804

Heraud JM, Edghill-Smith Y, Ayala V, Kalisz I, Parrino J, Kalyanaraman VS, et al. Subunit recombinant vaccine protects against monkeypox. J Immunol. 2006; 177(4):2552-64.

https://doi.org/10.4049/jimmunol.177.4.2552

Sidney J, Asabe S, Peters B, Purton KA, Chung J, Pencille TJ, Purcell R, Walker CM, Chisari FV, Sette A. Detailed characterization of the peptide binding specificity of five common Patr class I MHC molecules. Immunogenetics. 2006; 58(7):559-70.

https://doi.org/10.1007/s00251-006-0131-4

Shantier, S.W., Mustafa, M.I., Abdelmoneim, A.H. et al. Novel multi epitope-based vaccine against monkeypox virus: vaccinomic approach. Sci Rep. 2022; 12:15983.

https://doi.org/10.1038/s41598-022-20397-z

Omoniyi, A.A., Adebisi, S.S., Musa, S.A. et al. In silico design and analyses of a multi-epitope vaccine against Crimean-Congo hemorrhagic fever virus through reverse vaccinology and immunoinformatics approaches. Sci Rep. 2022; 12:8736.

https://doi.org/10.1038/s41598-022-12651-1

Nelluri KDD, Ammulu MA, Durga ML, Sravani M, Kumar VP, Poda S. In silico multi-epitope Bunyumwera virus vaccine to target virus nucleocapsid N protein. J Genet Eng Biotechnol. 2022; 20(1):89. Doi: 10.1186/s43141-022-00355-y

https://doi.org/10.1186/s43141-022-00355-y

Ahlers JD, Belyakov IM, Thomas EK, Berzofsky JA. High-affinity T helper epitope induces complementary helper and APC polarization, increased CTL, and protection against viral infection. J Clin Invest. 2001; 108(11):1677-85.

https://doi.org/10.1172/JCI200113463

Gupta G, Shareef I, Tomar S, Kumar MSN, Pandey S, Sarda R, Singh R, Das BK, Sinha S. Th1/Th2/Th17 Cytokine Profile among Different Stages of COVID-19 Infection. Natl Acad Sci Lett. 2022; 45(4):363-369.

https://doi.org/10.1007/s40009-022-01123-9

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2022 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...