revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Supplementary Files

PDF 110-119 (Español (España))

Keywords

Anfibios
Comportamiento
Fotoprotección
Larvas
Rayos Ultravioleta-B
Termorregulación Amphibians
Behavior
Larvae
Photoprotection
Thermoregulation
Ultraviolet-B rays

How to Cite

Gutiérrez H., K. ., & Bernal B., M. H. . (2025). Effect of ultraviolet b radiation on the thermal preference of Engystomops pustulosus tadpoles. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(37), Art 110–119. https://doi.org/10.47499/revistaaccb.v1i37.330

Abstract

Introduction: Ultraviolet B radiation (UVBR) and temperature are environmental factors that can affect amphibians, especially during their larval stage. Given the importance of thermoregulation for development and survival. Objective: Identify the impact of UVBR on the thermal preference of Engystomops pustulosus tadpoles. Materials and Methods: In the laboratory, tadpoles were exposed for one hour in 120 cm × 7 cm × 5 cm aluminum channels with 3 cm of water depth, where thermal gradients from 25 to 35°C were established, combined with two UVBR levels (low: 5 μW/cm²; high: 100 μW/cm²). Six experimental designs were constructed with different combinations of thermal gradients and UVBR levels. For each design, 45 tadpoles were tested, and after the exposure to UVBR and temperature, their distribution along the thermal and UVBR gradients was determined using the scan sampling method, which consists of recording the position of individuals at fixed intervals. Results: In experiment 1, tadpoles significantly avoided areas with high UVBR, at both high and low temperatures. In experiment 2, tadpoles showed no differences in thermal preference when exposed to constant high or low UVBR. In experiment 3, tadpoles avoided high UVBR at both constant low and high temperatures. Conclusion: Tadpoles of this species avoid high UVBR areas regardless of temperature, suggesting that they prioritize photoprotection over thermoregulation.

https://doi.org/10.47499/revistaaccb.v1i37.330

References

McKenzie, R. L., Björn, L. O., Bais, A. F., & Ilyas, M. (2003). Changes in biologically active ultraviolet radiation reaching the Earth's surface. Photochem. Photobiol. Sci, 2, 5-15. https://doi.org/10.1039/B211155C

https://doi.org/10.1039/b211155c

Häder, D.-P., Kumar, H. D., Smith, R. C., & Worrest, R. C. (2007). Effects of solar UV radiation on aquatic ecosystems and interactions with climate change. Photochem. Photobiol. Sci, 6, 267-285. https://doi.org/10.1039/B700020K

https://doi.org/10.1039/b700020k

Blaustein, A. R., Belden, L. K., Hatch, A. C., Kats, L. B., Hoffman, P. D., Hays, J. B., et al. (2001). Ultraviolet radiation and amphibians. En C. S. Cockell & A. R. Blaustein (Eds.), Ecosystems, evolution, and ultraviolet radiation (pp. 63-79). Springer.

https://doi.org/10.1007/978-1-4757-3486-7_3

Alton, L. A., & Franklin, C. E. (2017). Drivers of amphibian declines: Effects of ultraviolet radiation and interactions with other environmental factors. Clim Chang Responses 4, 6 (2017), 1-26. https://doi.org/10.1186/s40665-017-0034-7

https://doi.org/10.1186/s40665-017-0034-7

Londero, J. E. L., Santos, M. S., & Schuch, A. P. (2019). Impact of solar UV radiation on amphibians: Focus on genotoxic stress. Mutat. Res. Genet. Toxicol. Environ. Mutagen, 842, 14-21. https://doi.org/10.1016/j.mrgentox.2019.03.003

https://doi.org/10.1016/j.mrgentox.2019.03.003

Schavinski, C. Z., dos Santos, M. S., Londero, J. E. L., da Rocha, M. C., do Amaral, A. M., Ruiz, N. R., et al. (2022). Effects of isolated and combined exposures of Boana curupi (Anura: Hylidae) tadpoles to environmental doses of trichlorfon and ultraviolet radiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen, 883-884, Article 503549. https://doi.org/10.1016/j.mrgentox.2022.503549

https://doi.org/10.1016/j.mrgentox.2022.503549

Belden, L. K., & Blaustein, A. R. (2002). Exposure of red-legged frog embryos to ambient UV-B radiation in the field negatively affects larval growth and development. Oecologia, 130, 551-554. https://doi.org/10.1007/s00442-001-0843-y

https://doi.org/10.1007/s00442-001-0843-y

Häkkinen, J., Pasanen, S., & Kukkonen, J. V. K. (2001). The effects of solar UV-B radiation on embryonic mortality and development in three boreal anurans (Rana temporaria, Rana arvalis and Bufo bufo). Chemosphere, 44, 441-446. https://doi.org/10.1016/S0045-6535(00)00295-2

https://doi.org/10.1016/S0045-6535(00)00295-2

Ghanizadeh, E., Franklin, C. E., & Seebacher, F. (2016). UV-B radiation interacts with temperature to determine animal performance. Funct. Ecol, 30, 584-595. https://doi.org/10.1111/1365-2435.12520

https://doi.org/10.1111/1365-2435.12520

Sanders, R. W., Macaluso, A. L., Sardina, T. J., & Mitchell, D. L. (2005). Photoreactivation in two freshwater ciliates: Differential responses to variations in UV-B flux and temperature. Aquat. Microb. Ecol, 40, 283-292.

https://doi.org/10.3354/ame040283

Searle, C. L., Belden, L. K., Bancroft, B. A., Han, B. A., Biga, L. M., Blaustein, A. R., et al. (2010). Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae. Oecologia, 162, 237-245. https://doi.org/10.1007/s00442-009-1440-8

https://doi.org/10.1007/s00442-009-1440-8

Smith, K. C. (2000). Induction of photolyase activity in wood frog (Rana sylvatica) embryos. Photochem. Photobiol., 72, 575-578.

https://doi.org/10.1562/0031-8655(2000)0720575IOPAIW2.0.CO2

https://doi.org/10.1562/0031-8655(2000)072<0575:IOPAIW>2.0.CO;2

Bancroft, B. A., Baker, N. J., Searle, C. L., Garcia, T. S., & Blaustein, A. R. (2008). Larval amphibians seek warm temperatures and do not avoid harmful UV-B radiation. Behav. Ecol., 19(4), 879-886. https://doi.org/10.1093/beheco/arn044

https://doi.org/10.1093/beheco/arn044

Bancroft, B. A., Baker, N. J., & Blaustein, A. R. (2008). A meta-analysis of the effects of ultraviolet B radiation and its synergistic interactions with pH, contaminants, and disease on amphibian survival. Conserv. Biol., 22(4), 987-996. https://doi.org/10.1111/j.1523-1739.2008.00966.x

https://doi.org/10.1111/j.1523-1739.2008.00966.x

Lee, C., Le, M., Cannatella, D., & Wallingford, J. B. (2009). Changes in localization and expression levels of Shroom2 and spectrin contribute to variation in amphibian egg pigmentation patterns. Dev Genes Evol, 219, 319-330. https://doi.org/10.1007/s00427-009-0292-x

https://doi.org/10.1007/s00427-009-0292-x

Cope, E. D. (1864). Contributions to the herpetology of tropical America. Proc. Acad. Nat. Sci. Phila, 16, 166-181.

International Union for Conservation of Nature. (2025). The IUCN Red List of Threatened Species. https://www.iucnredlist.org (Consultado el 23 de junio de 2025)

Gosner, K. L. (1960). A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16(3), 183-190.

Lehner, P. N. (1996). Handbook of ethological methods (2nd ed.). Cambridge University Press.

Blaustein, A. R., Romansic, J. M., & Scheessele, E. A. (2005). Ambient levels of ultraviolet-B radiation cause mortality in juvenile western toads (Bufo boreas). Am. Midl. Nat., 154(2), 375-382. https://doi.org/10.1674/0003-0031(2005)154[0375:ALOURC]2.0.CO;2

https://doi.org/10.1674/0003-0031(2005)154[0375:ALOURC]2.0.CO;2

Hird, C. M., Franklin, C. E., & Cramp, R. L. (2022). Temperature causes species-specific responses to UV-induced DNA damage in amphibian larvae. Biol. Lett., 18(10), Article e20220359. https://doi.org/10.1098/rsbl.2022.0359

https://doi.org/10.1098/rsbl.2022.0359

van Uitregt, V. O., Wilson, R. S., & Franklin, C. E. (2007). Cooler temperatures increase sensitivity to ultraviolet B radiation in embryos and larvae of the frog Limnodynastes peronii. Glob. Chang. Biol., 13(6), 1114-1121. https://doi.org/10.1111/j.1365-2486.2007.01353.

https://doi.org/10.1111/j.1365-2486.2007.01353.x

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2025 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS