Abstract
Introduction. The presence of sulfur compounds in wastewater is an environmental problem due to their toxicity and the generation of unpleasant odors. Sulfur-metabolizing bacterial consortia represent an efficient alternative for their degradation. This study evaluated a bacterial consortium composed of Aeromonas spp. and Pantoea agglomerans, isolated from the La Marina WWTP (Armenia, Quindío), for the bioremediation of sulfur compounds in domestic wastewater. Objective. To isolate and characterize a bacterial consortium (Aeromonas spp. + P. agglomerans) and evaluate its ability to degrade sulfur compounds in wastewater. Materials and methods. A bacterial consortium was isolated and formed from samples from the La Marina WWTP. Na₂SO₄ tolerance tests and incubation tests in wastewater under real conditions were performed. The decrease in sulfur compounds was evaluated using FTIR and Raman spectroscopy, and pH and dissolved oxygen were also recorded before and after treatment as indirect measures of H₂S reduction. Results. The strains tolerated concentrations of up to 20 mg/L of Na₂SO₄ without significant inhibition. P. agglomerans showed a greater capacity to remove sulfur compounds than Aeromonas spp. In addition, no inhibition was observed in co-culture and synergy was present. FTIR and Raman analyses, together with an increase in pH from ~6.9 to ~8.3 and in dissolved oxygen from ~0.15 to ~0.83 mg/L (equivalent to a 4.86-fold increase), showed a decrease in sulfur compounds after treatment. Conclusions. The bacterial consortium demonstrated efficacy in the bioremediation of sulfur compounds and improved effluent quality, demonstrating its potential biotechnological application.
References
United States Environmental Protection Agency. Primer for Municipal Wastewater Treatment Systems (EPA 832-R-04-001). Office of Water, Office of Wastewater Management; 2004.
Sánchez I., Revelo D., Burbano A., García R., Guerrero C. Eficiencia de consorcios microbianos para tratamiento de aguas residuales en un sistema de recirculación acuícola. Biotecnol. Sector Agropec. Agroind. 2013; 11: 245-254.
Barreiro Vescovo S.N. Caracterización de los consorcios microalgas y bacterias en el tratamiento de aguas residuales urbanas. 2019.
Wu B., Liu F., Wenwen F., Yang T., Chen G.H., He Z., Wang S. Microbial sulfur metabolism and environmental implications. Sci. Total Environ. 2021; 778: 146085. doi:10.1016/j.scitotenv.2021.146085.
https://doi.org/10.1016/j.scitotenv.2021.146085
Jørgensen B.B. Unravelling the sulphur cycle of marine sediments. Environ. Microbiol. 2019; 21: 3533-3538. doi:10.1111/1462-2920.14721.
https://doi.org/10.1111/1462-2920.14721
Pronk J.T., Lien K., Bos P., Kuenen J.G. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 1991; 57: 2063-2068. doi:10.1128/AEM.57.7.2063-2068.1991.
https://doi.org/10.1128/aem.57.7.2063-2068.1991
Novair S.B., Quchan Z.B., Lajayer B.A., Shu W., Price G.W. The role of sulphate-reducing bacteria (SRB) in bioremediation of sulphate-rich wastewater: focus on the source of electron donors. Process Saf. Environ. Prot. 2024; 184: 190-207. doi:10.1016/j.psep.2024.01.103.
https://doi.org/10.1016/j.psep.2024.01.103
Ngurah G. Experimento preliminar de EM. Tecnología en tratamiento de aguas residuales. Indonesia Kyusei Naturaleza Sociedad Agropecuaria, Saraburi, Tailandia; 2005: 1-6.
Haosagul S., Prommeenate P., Hobbs G., Pisutpaisal N. Sulfide-oxidizing bacteria community in full-scale bioscrubber treating H₂S in biogas from swine anaerobic digester. Renew. Energy 2020; 150: 973-980. doi:10.1016/j.renene.2019.11.139.
https://doi.org/10.1016/j.renene.2019.11.139
Rana K., Rana N., Singh B. Aplicaciones de las bacterias oxidantes de azufre. En: Aspectos fisiológicos y biotecnológicos de los extremófilos. Prensa Académica; 2020: p.131-136. doi:10.13140/RG.2.2.13477.79840.
Medina Mori M. Energía alternativa a partir de la bacteria Pseudomonas aeruginosa y Aeromonas hydrophila por la técnica de la bioelectrogénesis. 2018. doi:10.26789/ANZSJA.2004.13.
Audu K.E., Adeniji S.E., Obidah J.S. Bioremediation of toxic metals in mining site of Zamfara metropolis using resident bacteria (Pantoea agglomerans): an optimization approach. Heliyon 2020; 6: e04799. doi:10.1016/j.heliyon.2020.e04799.
https://doi.org/10.1016/j.heliyon.2020.e04799
Nguyen K., Kumar P. Morphological phenotypes, cell division, and gene expression of Escherichia coli under high concentration of sodium sulfate. Microorganisms 2022; 10: 274. doi:10.3390/microorganisms10020274.
https://doi.org/10.3390/microorganisms10020274
Yang Z., Wu Q., Liu Z., Qi X., Zhang Z., He M., Yin H. Harnessing sulfate-reducing bacteria with plants to revitalize metal-tainted coal mine soils in Midwest China: metal sequestration performance, ecological networking interaction, and functional enzymatic prediction. Front. Microbiol. 2023; 14: 1306573. doi:10.3389/fmicb.2023.1306573.
https://doi.org/10.3389/fmicb.2023.1306573
Mathews L., Abu-Reesh I.M., Nakhla G. Aeromonas hydrophila in wastewater treatment: biofilm formation and pollutant removal. Bioresour. Technol. 2018; 265: 256-263.
Paulo P.L., Jiang B., Stams A.J.M. Aeromonas species and their role in biodegradation of industrial surfactants in wastewater. Water Sci. Technol. 2017; 75: 1195-1205.
Beltrán J., Álvarez M., Restrepo C. Hydrocarbon and sulfate biodegradation potential of Aeromonas spp. isolated from contaminated aquatic environments. Int. Biodeterior. Biodegradation 2016; 115: 192-200.
Montenegro S., Villamil C., Pérez J. Sulfate metabolism pathways in Aeromonas spp.: implications for wastewater bioremediation. Environ. Technol. Innov. 2021; 24: 101939.
Castro R., Méndez E., Rodríguez P. Sulfur compound transformation by Aeromonas strains in polluted waters. Ecotoxicol. Environ. Saf. 2016; 134: 201-208.
Chalco A., Vargas M., Herrera D. Pantoea agglomerans in sulfur removal bioprocesses. Environ. Biotechnol. 2022; 18: 59-72.
Daza E., Gutiérrez L., Rojas H. Bioreduction of sulfates and heavy metals by Pantoea agglomerans in contaminated environments. J. Environ. Manage. 2016; 184: 505-512.
Layedra A., Bravo R., Torres L. Evaluación de un consorcio microbiano y selección de un soporte en un sistema de biofiltración. Ing. Invest. 2019; 39: 45-54.
Díaz-Borrego J., López J., Ramos M. Microbial networks in the sulfur cycle: new insights into wastewater ecosystems. J. Appl. Microbiol. 2017; 122: 231-243.
Singh S., Kumar A., Ghosh P. Sulfate removal from wastewater using bacterial systems: an FTIR-based study. J. Hazard. Mater. 2011; 192: 295-302.
Parikh S.J., Goyne K.W., Margenot A.J., Mukome F.N., Wagner S. Soil chemical insights provided through vibrational spectroscopy. Adv. Agron. 2014; 126: 1-148.
https://doi.org/10.1016/B978-0-12-800132-5.00001-8
Liu Y., Chen J., Zhou X. Anoxic bacterial consortia reduce sulfate to metal sulfides in wastewater treatment. Water Res. 2024; 236: 120201. doi:10.1016/j.watres.2023.120201.
https://doi.org/10.1016/j.watres.2023.120201
Gong H., Li Q., Zhang Y. FTIR evidence of oxygenated metabolite accumulation during microbial degradation of sulfur compounds. Chemosphere 2024; 350: 140433.
Chen Y., Cheng J., Creamer K. Inhibition of autotrophic denitrifiers under sulfide-limited conditions. Bioresour. Technol. 2017; 245: 298-305.
Krishnakumar B., Majumdar S., Manilal B.V., Haridas A. Treatment of sulphide-containing wastewater with sulphur recovery in a novel reverse fluidized loop reactor (RFLR). Water Res. 2005; 39: 639-647.
https://doi.org/10.1016/j.watres.2004.11.015
Ramírez A., López D., Sánchez J. Microalgal consortia reduce dissolved sulfides and increase oxygen in wastewater. Algal Res. 2020; 47: 101852.
Nielsen P.H., Vollertsen J. The sulfur cycle in sewer systems: a review. Water Res. 2021; 199: 117228.
Giraldo L., Lozada J. Aplicación de consorcios bacterianos autóctonos en biorreactores para aguas residuales. Rev. Fac. Ing. Univ. Antioquia 2019; 28: 11-22.
Ruiz H., Cifuentes L., Morales C. Uso de consorcios microbianos en biorreactores para el tratamiento de efluentes contaminados. Ing. Compet. 2018; 20: 65-74.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2025 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS


