Abstract
Objective: By characterizing single nucleotide polymorphisms (SNPs) present in gastric mucosal receptor genes and evaluating their interaction with Helicobacter pylori (H. pylori) adhesins, it is possible to identify a valid strategy for blocking its colonization and preventing gastric cancer (GC) in Colombia. Materials and Methods: SNPs associated with three gastric mucosal receptors were characterized: MUC5AC, PTPN11, and CEACAM3. Sixty-three exomes from individuals without gastric lesions and 14 exomes from patients in Nariño at risk of GC and infected with H. pylori were included. The causal effect of the variants was analyzed using the annotation programs PolyPhen-2, SIFT, MutationTaster, CADD, and I-Mutant. Two hundred and thirty-five H. pylori sequences were included for analysis of the babA, cagA, and hopQ genes, and a molecular docking analysis was performed using HDOCK. Results: 6/26 deleterious SNPs were identified in individuals without gastric lesions. In individuals with gastric pathologies and infected with H. pylori, 2/5 deleterious SNPs were identified: 24/87 amino acid changes in BabA; 42/87 in CagA; and 21/87 in HopQ. Conclusions: Variants in the amino acid sequence of the virulence factors BabA, CagA, and HopQ favor interaction with gastric mucosal receptor proteins MUC5AC, PTPN11, and CEACAM3, respectively. The identified SNPs induce affinity changes at the structural and functional levels favoring H. pylori colonization; therefore, they can be considered as potential molecular markers for intervention in the prevention of gastric cancer in Colombia.
References
Yates, C. M., & Sternberg, M. J. (2013). The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. J. Mol. Biol. 425(21), 3949-3963. https://doi.org/10.1016/j.jmb.2013.07.012
https://doi.org/10.1016/j.jmb.2013.07.012
Cesur, M. F., & Durmuş, S. (2018). Systems Biology Modeling to Study Pathogen-Host Interactions. Methods Mol. Biol. 1734, 97 - 112. https://doi.org/10.1007/978-1-4939-7604-1_10
https://doi.org/10.1007/978-1-4939-7604-1_10
Durmuş, S., Çakır, T., Özgür, A., & Guthke, R. (2015). A review on computational systems biology of pathogen-host interactions. Front. Microbiol. 6, 235. https://doi.org/10.3389/fmicb.2015.00235
https://doi.org/10.3389/fmicb.2015.00235
Ansari, S., & Yamaoka, Y. (2017). Survival of Helicobacter pylori in gastric acidic territory. Helicobacter, 22(4), 10.1111/hel.12386. https://doi.org/10.1111/hel.12386
https://doi.org/10.1111/hel.12386
Matta, A. J., Zambrano, D. C., & Pazos, A. J. (2018). Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations. World J. Gastroenterol. 24(14), 1531-1539. https://doi.org/10.3748/wjg.v24.i14.1531
https://doi.org/10.3748/wjg.v24.i14.1531
Guzmán, K. & Pazos, A. (2021). P-264 Helicobacter pylori SNPs associated with tetracycline, clarithromycin and amoxicillin resistance in Colombia. Ann. Oncol. 32, 187-188. https://doi.org/10.1016/j.annonc.2021.05.318
https://doi.org/10.1016/j.annonc.2021.05.318
Bayona, M. & Gutiérrez, E. (2017). Helicobacter pylori: vías de transmisión. Med., 39(3), 210-220. ISSN: 0120-5498.
Baj, J., Forma, A., Sitarz, M., Portincasa, P., Garruti, G., Krasowska, D., & Maciejewski, R. (2020). Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells, 10(1), 27. https://doi.org/10.3390/cells10010027
https://doi.org/10.3390/cells10010027
Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schächter, V., Chemama, Y., Labigne, A., & Legrain, P. (2001). The protein-protein interaction map of Helicobacter pylori. Nature, 409(6817), 211-215. https://doi.org/10.1038/35051615
https://doi.org/10.1038/35051615
Shah, P. S., Wojcechowskyj, J. A., Eckhardt, M., & Krogan, N. J. (2015). Comparative mapping of host-pathogen protein-protein interactions. Curr. Opin. Microbiol., 27, 62-68. https://doi.org/10.1016/j.mib.2015.07.008
https://doi.org/10.1016/j.mib.2015.07.008
Datta, A., Mazumder, M. H., Chowdhury, A. S., & Hasan, M. A. (2015). Functional and Structural Consequences of Damaging Single Nucleotide Polymorphisms in Human Prostate Cancer Predisposition Gene RNASEL. BioMed Res. Int., 271458. https://doi.org/10.1155/2015/271458
https://doi.org/10.1155/2015/271458
Elber, R. (2015). From an SNPs to a Disease: A Comprehensive Statistical Analysis. Structure 23(7), 1155. https://doi.org/10.1016/j.str.2015.06.005
https://doi.org/10.1016/j.str.2015.06.005
Ahmed, S., Zhou, Z., Zhou, J. & Chen, S. (2016). Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genom. Proteom. Bioinform., 14(5), 298-313. https://doi.org/10.1016/j.gpb.2016.03.008
https://doi.org/10.1016/j.gpb.2016.03.008
Ponzoni, L., Peñaherrera, D., Oltvai, Z. & Bahar, I. (2020). Rhapsody: predicting the pathogenicity of human missense variants. Bioinformatics, 36(10), 3084-3092, https://doi.org/10.1093/bioinformatics/btaa127
https://doi.org/10.1093/bioinformatics/btaa127
DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43(5), 491-498. https://doi.org/10.1038/ng.806
https://doi.org/10.1038/ng.806
Hao, C., Feng, Y., Xiao, R. & Xiao, P. (2011). Polimorfismos de nucleótido único no sinónimos no neutros en transportadores ABC humanos: la primera comparación de seis métodos de predicción. Informes farmacológicos: PR, 63(4), 924-34.
Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., 7(7), 20. https://doi.org/10.1002/0471142905.hg0720s76
https://doi.org/10.1002/0471142905.hg0720s76
Kircher, M., Witten, D., Jain, P., O'Roak, B., Cooper, G. & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46(3), 310-315. https://doi.org/10.1038/ng.2892
https://doi.org/10.1038/ng.2892
Moreno, L. (2018). Genómica comparativa de las variantes exómicas de pacientes con MPS IV-A y su frecuencia poblacional en una muestra del sur occidente colombiano. Universidad del Valle.
Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. (2021). CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med., 13(31). https://doi.org/10.1186/s13073-021-00835-9
https://doi.org/10.1186/s13073-021-00835-9
Rentzsch, P., Witten, D., Cooper, G., Shendure, J. & Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res., 47(8), 886-894. https://doi.org/10.1093/nar/gky1016
https://doi.org/10.1093/nar/gky1016
Studer, G., Rempfer, C., Waterhouse, A., Gumienny, R., Haas, J. & Schwede, T. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 36(6), 1765-1771. https://doi.org/10.1093/bioinformatics/btz828
https://doi.org/10.1093/bioinformatics/btz828
Yan, Y., Tao, H., He, J., & Huang, S. Y. (2020). The HDOCK server for integrated protein-protein docking. Nat. Protoc., 15(5), 1829-1852. https://doi.org/10.1038/s41596-020-0312-x
https://doi.org/10.1038/s41596-020-0312-x
Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res., 45 (1), 365-373. https://doi.org/10.1093/nar/gkx407
https://doi.org/10.1093/nar/gkx407
Lindén, S., Nordman, H., Hedenbro, J., Hurtig, M., Borén, T., & Carlstedt, I. (2002). Strain- and blood group-dependent binding of Helicobacter pylori to human gastric MUC5AC glycoforms. Gastroenterol., 123(6), 1923-1930. https://doi.org/10.1053/gast.2002.37076
https://doi.org/10.1053/gast.2002.37076
Skoog, E., Padra, M., Åberg, A. et al. La unión dependiente de BabA de Helicobacter pylori a las mucinas gástricas humanas provoca una agregación que inhibe la proliferación y está regulada a través de ArsS. Sci Rep 7(40656). https://doi.org/10.1038/srep40656
https://doi.org/10.1038/srep40656
Gonciarz, W., Walencka, M., Moran, A., Hinc, K., Obuchowski, M. & Chmiela, M. (2019). Upregulation of MUC5AC production and deposition of LEWIS determinants by Helicobacter pylori facilitate gastric tissue colonization and the maintenance of infection. J Biomed Sci 26(23). https://doi.org/10.1186/s12929-019-0515-z
https://doi.org/10.1186/s12929-019-0515-z
Rajasekaran, N., Suresh, S., Gopi, S., Raman, K., & Naganathan, A. N. (2017). A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochem., 56(1), 294-305. https://doi.org/10.1021/acs.biochem.6b00798
https://doi.org/10.1021/acs.biochem.6b00798
Prabantu, V. M., Naveenkumar, N., & Srinivasan, N. (2021). Influence of Disease-Causing Mutations on Protein Structural Networks. Front. Mol. Biosci. 7(2020). https://doi.org/10.3389/fmolb.2020.620554
https://doi.org/10.3389/fmolb.2020.620554
Yin, Y., Liang, H., Wei, N., & Zheng, Z. (2022). Prevalence of chronic atrophic gastritis worldwide from 2010 to 2020: an updated systematic review and meta-analysis. Ann. Palliat. Med., 11(12), 3697-3703. https://doi.org/10.21037/apm-21-1464
https://doi.org/10.21037/apm-21-1464
Yoshida, T., Kato, J., Inoue, I., Yoshimura, N., Deguchi, H., Mukoubayashi, C., Oka, M., Watanabe, M., Enomoto, S., Niwa, T., Maekita, T., Iguchi, M., Tamai, H., Utsunomiya, H., Yamamichi, N., Fujishiro, M., Iwane, M., Takeshita, T., Ushijima, T., & Ichinose, M. (2014). Cancer development based on chronic active gastritis and resulting gastric atrophy as assessed by serum levels of pepsinogen and Helicobacter pylori antibody titer. Int. J. Cancer, 134(6), 1445-1457. https://doi.org/10.1002/ijc.28470
https://doi.org/10.1002/ijc.28470
Bravo, M., Martínez, T. & Bravo, J. C. (2012). Relación entre la integridad del CagPAI y los polimorfismos en el gen CagA con la severidad de la gastritis en pacientes infectados con H. pylori - CagA positivo. Rev. colomb. cancerol. 16(2), 110 -118. https://doi.org/10.1016/S0123-9015(12)70022-7
https://doi.org/10.1016/S0123-9015(12)70022-7
Hatakeyama, M. (2014). Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe, 15(3), 306-316. https://doi.org/10.1016/j.chom.2014.02.008
https://doi.org/10.1016/j.chom.2014.02.008
Sodir, N. M., Pathria, G., Adamkewicz, J. I., Kelley, E. H., Sudhamsu, J., Merchant, M., Chiarle, R., & Maddalo, D. (2023). SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov., 13(11), 2339-2355. https://doi.org/10.1158/2159-8290.CD-23-0383
https://doi.org/10.1158/2159-8290.CD-23-0383
Königer, V., Holsten, L., Harrison, U., Busch, B., Loell, E., Zhao, Q., Bonsor, D. A., Roth, A., Kengmo-Tchoupa, A., Smith, S. I., Mueller, S., Sundberg, E. J., Zimmermann, W., Fischer, W., Hauck, C. R., & Haas, R. (2016). Erratum: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol, 2, 16233. https://doi.org/10.1038/nmicrobiol.2016.233
https://doi.org/10.1038/nmicrobiol.2016.233
Nguyen, Q. A., Schmitt, L., Mejías-Luque, R., & Gerhard, M. (2023). Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front. Immunol., 14, 1113478. https://doi.org/10.3389/fimmu.2023.1113478
https://doi.org/10.3389/fimmu.2023.1113478
Jiang, J., Jia, Z. F., Kong, F., Jin, M. S., Wang, Y. P., Tian, S., Suo, J., & Cao, X. (2012). Association of polymorphism of PTPN 11 encoding SHP-2 with gastric atrophy but not gastric cancer in Helicobacter pylori seropositive Chinese population. BMC Gastroenterol, 12(89). https://doi.org/10.1186/1471-230X-12-89
https://doi.org/10.1186/1471-230X-12-89
Daza, A., Gómez, R., Bastidas D., Montenegro, L., & Pazos, A. (2023). Ancestros de Helicobacter pylori de una zona de Nariño con alto riesgo de cáncer gástrico: Helicobacter pylori ancestros y cáncer gástrico. Rev. Asoc. Colomb. Cien. Biol, 1(35), 46-55. https://doi.org/10.47499/revistaaccb.v1i35.284

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c) 2026 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS


