revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Supplementary Files

PDF 133-145 (Español (España))

Keywords

H. pylori
Colonización
Proteínas receptoras
Genes de virulencia
Cáncer Gástrico
SNPs H. pylori
Colonization
Receptor proteins
Virulence genes
Gastric cancer
SNPs

How to Cite

Lizcano M, D. ., Mejía O, L. ., Castillo G., A. ., & Pazos M, A. . (2026). SNPs polymorphisms associated with gastric mucosal receptors and their effect on the interaction with Helicobacter pylori adhesins in Colombian subjects. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(37), Art 133–145. https://doi.org/10.47499/revistaaccb.v1i37.334

Abstract

Objective: By characterizing single nucleotide polymorphisms (SNPs) present in gastric mucosal receptor genes and evaluating their interaction with Helicobacter pylori (H. pylori) adhesins, it is possible to identify a valid strategy for blocking its colonization and preventing gastric cancer (GC) in Colombia. Materials and Methods: SNPs associated with three gastric mucosal receptors were characterized: MUC5AC, PTPN11, and CEACAM3. Sixty-three exomes from individuals without gastric lesions and 14 exomes from patients in Nariño at risk of GC and infected with H. pylori were included. The causal effect of the variants was analyzed using the annotation programs PolyPhen-2, SIFT, MutationTaster, CADD, and I-Mutant. Two hundred and thirty-five H. pylori sequences were included for analysis of the babA, cagA, and hopQ genes, and a molecular docking analysis was performed using HDOCK. Results: 6/26 deleterious SNPs were identified in individuals without gastric lesions. In individuals with gastric pathologies and infected with H. pylori, 2/5 deleterious SNPs were identified: 24/87 amino acid changes in BabA; 42/87 in CagA; and 21/87 in HopQ. Conclusions: Variants in the amino acid sequence of the virulence factors BabA, CagA, and HopQ favor interaction with gastric mucosal receptor proteins MUC5AC, PTPN11, and CEACAM3, respectively. The identified SNPs induce affinity changes at the structural and functional levels favoring H. pylori colonization; therefore, they can be considered as potential molecular markers for intervention in the prevention of gastric cancer in Colombia.

https://doi.org/10.47499/revistaaccb.v1i37.334

References

Yates, C. M., & Sternberg, M. J. (2013). The effects of non-synonymous single nucleotide polymorphisms (nsSNPs) on protein-protein interactions. J. Mol. Biol. 425(21), 3949-3963. https://doi.org/10.1016/j.jmb.2013.07.012

https://doi.org/10.1016/j.jmb.2013.07.012

Cesur, M. F., & Durmuş, S. (2018). Systems Biology Modeling to Study Pathogen-Host Interactions. Methods Mol. Biol. 1734, 97 - 112. https://doi.org/10.1007/978-1-4939-7604-1_10

https://doi.org/10.1007/978-1-4939-7604-1_10

Durmuş, S., Çakır, T., Özgür, A., & Guthke, R. (2015). A review on computational systems biology of pathogen-host interactions. Front. Microbiol. 6, 235. https://doi.org/10.3389/fmicb.2015.00235

https://doi.org/10.3389/fmicb.2015.00235

Ansari, S., & Yamaoka, Y. (2017). Survival of Helicobacter pylori in gastric acidic territory. Helicobacter, 22(4), 10.1111/hel.12386. https://doi.org/10.1111/hel.12386

https://doi.org/10.1111/hel.12386

Matta, A. J., Zambrano, D. C., & Pazos, A. J. (2018). Punctual mutations in 23S rRNA gene of clarithromycin-resistant Helicobacter pylori in Colombian populations. World J. Gastroenterol. 24(14), 1531-1539. https://doi.org/10.3748/wjg.v24.i14.1531

https://doi.org/10.3748/wjg.v24.i14.1531

Guzmán, K. & Pazos, A. (2021). P-264 Helicobacter pylori SNPs associated with tetracycline, clarithromycin and amoxicillin resistance in Colombia. Ann. Oncol. 32, 187-188. https://doi.org/10.1016/j.annonc.2021.05.318

https://doi.org/10.1016/j.annonc.2021.05.318

Bayona, M. & Gutiérrez, E. (2017). Helicobacter pylori: vías de transmisión. Med., 39(3), 210-220. ISSN: 0120-5498.

Baj, J., Forma, A., Sitarz, M., Portincasa, P., Garruti, G., Krasowska, D., & Maciejewski, R. (2020). Helicobacter pylori Virulence Factors-Mechanisms of Bacterial Pathogenicity in the Gastric Microenvironment. Cells, 10(1), 27. https://doi.org/10.3390/cells10010027

https://doi.org/10.3390/cells10010027

Rain, J. C., Selig, L., De Reuse, H., Battaglia, V., Reverdy, C., Simon, S., Lenzen, G., Petel, F., Wojcik, J., Schächter, V., Chemama, Y., Labigne, A., & Legrain, P. (2001). The protein-protein interaction map of Helicobacter pylori. Nature, 409(6817), 211-215. https://doi.org/10.1038/35051615

https://doi.org/10.1038/35051615

Shah, P. S., Wojcechowskyj, J. A., Eckhardt, M., & Krogan, N. J. (2015). Comparative mapping of host-pathogen protein-protein interactions. Curr. Opin. Microbiol., 27, 62-68. https://doi.org/10.1016/j.mib.2015.07.008

https://doi.org/10.1016/j.mib.2015.07.008

Datta, A., Mazumder, M. H., Chowdhury, A. S., & Hasan, M. A. (2015). Functional and Structural Consequences of Damaging Single Nucleotide Polymorphisms in Human Prostate Cancer Predisposition Gene RNASEL. BioMed Res. Int., 271458. https://doi.org/10.1155/2015/271458

https://doi.org/10.1155/2015/271458

Elber, R. (2015). From an SNPs to a Disease: A Comprehensive Statistical Analysis. Structure 23(7), 1155. https://doi.org/10.1016/j.str.2015.06.005

https://doi.org/10.1016/j.str.2015.06.005

Ahmed, S., Zhou, Z., Zhou, J. & Chen, S. (2016). Pharmacogenomics of Drug Metabolizing Enzymes and Transporters: Relevance to Precision Medicine. Genom. Proteom. Bioinform., 14(5), 298-313. https://doi.org/10.1016/j.gpb.2016.03.008

https://doi.org/10.1016/j.gpb.2016.03.008

Ponzoni, L., Peñaherrera, D., Oltvai, Z. & Bahar, I. (2020). Rhapsody: predicting the pathogenicity of human missense variants. Bioinformatics, 36(10), 3084-3092, https://doi.org/10.1093/bioinformatics/btaa127

https://doi.org/10.1093/bioinformatics/btaa127

DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet., 43(5), 491-498. https://doi.org/10.1038/ng.806

https://doi.org/10.1038/ng.806

Hao, C., Feng, Y., Xiao, R. & Xiao, P. (2011). Polimorfismos de nucleótido único no sinónimos no neutros en transportadores ABC humanos: la primera comparación de seis métodos de predicción. Informes farmacológicos: PR, 63(4), 924-34.

Adzhubei, I., Jordan, D. M., & Sunyaev, S. R. (2013). Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., 7(7), 20. https://doi.org/10.1002/0471142905.hg0720s76

https://doi.org/10.1002/0471142905.hg0720s76

Kircher, M., Witten, D., Jain, P., O'Roak, B., Cooper, G. & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet., 46(3), 310-315. https://doi.org/10.1038/ng.2892

https://doi.org/10.1038/ng.2892

Moreno, L. (2018). Genómica comparativa de las variantes exómicas de pacientes con MPS IV-A y su frecuencia poblacional en una muestra del sur occidente colombiano. Universidad del Valle.

Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. (2021). CADD-Splice-improving genome-wide variant effect prediction using deep learning-derived splice scores. Genome Med., 13(31). https://doi.org/10.1186/s13073-021-00835-9

https://doi.org/10.1186/s13073-021-00835-9

Rentzsch, P., Witten, D., Cooper, G., Shendure, J. & Kircher, M. (2019). CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res., 47(8), 886-894. https://doi.org/10.1093/nar/gky1016

https://doi.org/10.1093/nar/gky1016

Studer, G., Rempfer, C., Waterhouse, A., Gumienny, R., Haas, J. & Schwede, T. (2020). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 36(6), 1765-1771. https://doi.org/10.1093/bioinformatics/btz828

https://doi.org/10.1093/bioinformatics/btz828

Yan, Y., Tao, H., He, J., & Huang, S. Y. (2020). The HDOCK server for integrated protein-protein docking. Nat. Protoc., 15(5), 1829-1852. https://doi.org/10.1038/s41596-020-0312-x

https://doi.org/10.1038/s41596-020-0312-x

Yan, Y., Zhang, D., Zhou, P., Li, B., & Huang, S. Y. (2017). HDOCK: a web server for protein-protein and protein-DNA/RNA docking based on a hybrid strategy. Nucleic Acids Res., 45 (1), 365-373. https://doi.org/10.1093/nar/gkx407

https://doi.org/10.1093/nar/gkx407

Lindén, S., Nordman, H., Hedenbro, J., Hurtig, M., Borén, T., & Carlstedt, I. (2002). Strain- and blood group-dependent binding of Helicobacter pylori to human gastric MUC5AC glycoforms. Gastroenterol., 123(6), 1923-1930. https://doi.org/10.1053/gast.2002.37076

https://doi.org/10.1053/gast.2002.37076

Skoog, E., Padra, M., Åberg, A. et al. La unión dependiente de BabA de Helicobacter pylori a las mucinas gástricas humanas provoca una agregación que inhibe la proliferación y está regulada a través de ArsS. Sci Rep 7(40656). https://doi.org/10.1038/srep40656

https://doi.org/10.1038/srep40656

Gonciarz, W., Walencka, M., Moran, A., Hinc, K., Obuchowski, M. & Chmiela, M. (2019). Upregulation of MUC5AC production and deposition of LEWIS determinants by Helicobacter pylori facilitate gastric tissue colonization and the maintenance of infection. J Biomed Sci 26(23). https://doi.org/10.1186/s12929-019-0515-z

https://doi.org/10.1186/s12929-019-0515-z

Rajasekaran, N., Suresh, S., Gopi, S., Raman, K., & Naganathan, A. N. (2017). A General Mechanism for the Propagation of Mutational Effects in Proteins. Biochem., 56(1), 294-305. https://doi.org/10.1021/acs.biochem.6b00798

https://doi.org/10.1021/acs.biochem.6b00798

Prabantu, V. M., Naveenkumar, N., & Srinivasan, N. (2021). Influence of Disease-Causing Mutations on Protein Structural Networks. Front. Mol. Biosci. 7(2020). https://doi.org/10.3389/fmolb.2020.620554

https://doi.org/10.3389/fmolb.2020.620554

Yin, Y., Liang, H., Wei, N., & Zheng, Z. (2022). Prevalence of chronic atrophic gastritis worldwide from 2010 to 2020: an updated systematic review and meta-analysis. Ann. Palliat. Med., 11(12), 3697-3703. https://doi.org/10.21037/apm-21-1464

https://doi.org/10.21037/apm-21-1464

Yoshida, T., Kato, J., Inoue, I., Yoshimura, N., Deguchi, H., Mukoubayashi, C., Oka, M., Watanabe, M., Enomoto, S., Niwa, T., Maekita, T., Iguchi, M., Tamai, H., Utsunomiya, H., Yamamichi, N., Fujishiro, M., Iwane, M., Takeshita, T., Ushijima, T., & Ichinose, M. (2014). Cancer development based on chronic active gastritis and resulting gastric atrophy as assessed by serum levels of pepsinogen and Helicobacter pylori antibody titer. Int. J. Cancer, 134(6), 1445-1457. https://doi.org/10.1002/ijc.28470

https://doi.org/10.1002/ijc.28470

Bravo, M., Martínez, T. & Bravo, J. C. (2012). Relación entre la integridad del CagPAI y los polimorfismos en el gen CagA con la severidad de la gastritis en pacientes infectados con H. pylori - CagA positivo. Rev. colomb. cancerol. 16(2), 110 -118. https://doi.org/10.1016/S0123-9015(12)70022-7

https://doi.org/10.1016/S0123-9015(12)70022-7

Hatakeyama, M. (2014). Helicobacter pylori CagA and gastric cancer: a paradigm for hit-and-run carcinogenesis. Cell Host Microbe, 15(3), 306-316. https://doi.org/10.1016/j.chom.2014.02.008

https://doi.org/10.1016/j.chom.2014.02.008

Sodir, N. M., Pathria, G., Adamkewicz, J. I., Kelley, E. H., Sudhamsu, J., Merchant, M., Chiarle, R., & Maddalo, D. (2023). SHP2: A Pleiotropic Target at the Interface of Cancer and Its Microenvironment. Cancer Discov., 13(11), 2339-2355. https://doi.org/10.1158/2159-8290.CD-23-0383

https://doi.org/10.1158/2159-8290.CD-23-0383

Königer, V., Holsten, L., Harrison, U., Busch, B., Loell, E., Zhao, Q., Bonsor, D. A., Roth, A., Kengmo-Tchoupa, A., Smith, S. I., Mueller, S., Sundberg, E. J., Zimmermann, W., Fischer, W., Hauck, C. R., & Haas, R. (2016). Erratum: Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol, 2, 16233. https://doi.org/10.1038/nmicrobiol.2016.233

https://doi.org/10.1038/nmicrobiol.2016.233

Nguyen, Q. A., Schmitt, L., Mejías-Luque, R., & Gerhard, M. (2023). Effects of Helicobacter pylori adhesin HopQ binding to CEACAM receptors in the human stomach. Front. Immunol., 14, 1113478. https://doi.org/10.3389/fimmu.2023.1113478

https://doi.org/10.3389/fimmu.2023.1113478

Jiang, J., Jia, Z. F., Kong, F., Jin, M. S., Wang, Y. P., Tian, S., Suo, J., & Cao, X. (2012). Association of polymorphism of PTPN 11 encoding SHP-2 with gastric atrophy but not gastric cancer in Helicobacter pylori seropositive Chinese population. BMC Gastroenterol, 12(89). https://doi.org/10.1186/1471-230X-12-89

https://doi.org/10.1186/1471-230X-12-89

Daza, A., Gómez, R., Bastidas D., Montenegro, L., & Pazos, A. (2023). Ancestros de Helicobacter pylori de una zona de Nariño con alto riesgo de cáncer gástrico: Helicobacter pylori ancestros y cáncer gástrico. Rev. Asoc. Colomb. Cien. Biol, 1(35), 46-55. https://doi.org/10.47499/revistaaccb.v1i35.284

https://doi.org/10.47499/revistaaccb.v1i35.284

Creative Commons License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Copyright (c) 2026 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS