Page 56 - ACCB 2020
P. 56

Revista de la Asociación Colombiana de Ciencias Biológicas
            issn impreso 0120-4173, issn en línea 2500-7459


                      adsorption of volatile organic compounds. J Air Waste Manage Assoc, 62, 1196–1202.
                   40.  Kütahyalı, C. and Eral, M. (2004) Selective adsorption of uranium from aqueous solutions using acti-
                      vated carbon prepared from charcoal by chemical activation. Sep Purif  Technol, 40(2), 109-114
                   41.  UNICEF, 2008. Promotion of household wa ter treatment and safe storage in unicef wash programmes.
                      https://www.unicef.org/wash/fi les/Scaling_up_HWTS_Jan_25th_with_ comments.pdf
                   42.  Agrawal, V.K. and Bhalwar, R. (2009) Household water purifi cation: low-cost interventions. Med J
                      Armed Forces India, 65(3): 260–263.
                   43.  Ahmed, T., Imdad, S., Yaldram, K., Butt, N.M. and Pervez, A. (2013) Emerging nanotechnology-based
                      methods for water purifi cation: a review. Desalin Water Treat 52, 4089–4101.
                   44.  S. Kumar, W. Ahlawat, R. Kumar and N. Dilbaghi. Graphene, carbon nanotubes, zinc oxide and gold
                      as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron, 2015, 70, 498–
                      503.
                   45.  Sun, H., Kwan, C., Suvorova, A., Ang, H.M., Tadé, M.O.and Wang, S. (2014) Catalytic oxidation of
                      organic pollutants on pristine and surface nitrogen-modifi ed carbon nanotubes with sulfate radicals.
                      Appl Catal B Environ, 154-155, 134–141.
                   46.  Pan, B. and Xing, B. (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Envi-
                      ron Sci Techno,l 42(24), 9005–9013.
                   47.  Ndiaye, A., Bonnet, P., Pauly, A., Dubois, M., Brunet, J., Varenne, C., et al (2013) Noncovalent functio-
                      nalization of single-wall carbon nanotubes for the elaboration of gas sensor dedicated to BTX type
                      gases: the case of toluene. J Phys Chem C 117, 20217–20228.
                   48.  Lu, C., Chung, Y.-L. and Chang, K.-F. (2005) Adsorption of trihalomethanes from water with carbon
                      nanotubes. Water Res, 39, 1183–1189.
                   49.  Azamat, J., Khataee, A., Joo, S.W. and Yin, B. (2015) Removal of trihalomethanes from aqueous solu-
                      tion through armchair carbon nanotubes: a molecular dynamics study. J Mol Graph Model, 57, 70–75.
                   50.  Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, A. (2005) Raman spectroscopy of carbon na-
                      notubes. Phys Rep, 409, 47–99.
                   51.  Koh, B. and Cheng, W. (2014) Mechanisms of carbon nanotube aggregation and the reversion of car-
                      bon nanotube aggregates in aqueous medium. Langmuir, 30, 10899–10909.
                   52.  Ji, L., Chen, W., Duan, L. and Zhu, D, (2009) Mechanisms for strong adsorption of tetracycline to
                      carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci
                      Technol, 43, 2322–2327.
                   53.  Kim, B., Lim, D., Jin, H.J., Lee, H.Y., Namgung, S., Ko, Y., et al (2012) Family-selective detection of
                      antibiotics using antibody-functionalized carbon nanotube sensors. Sensors Actuators B Chem, 166-
                      167, 193–199.
                   54.  Song, X.-Y., Ha, W., Chen, J. and Shi, Y.-P. (2014) Application of β-cyclodextrin-modifi ed, carbon
                      nanotube-reinforced hollow fi ber to solid-phase microextraction of plant hormones. J Chromatogr, A
                      1374, 23–30.
                   55.  Dai, B., Cao, M., Fang, G., Liu, B., Dong, X., Pan, M., et al (2012) Schiff base-chitosan grafted mul-
                      tiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal
                      by ICP-MS. J Hazard Mater, 219-220, 103–110.
                   56.  Tian, Y., Gao, B., Morales, V.L., Wu, L., Wang, Y., Muñoz-Carpena, R., et al (2012) Methods of using
                      carbon nanotubes as fi lter media to remove aqueous heavy metals. Chem Eng J, 210, 557–563.
                   57.  Mazloum-Ardakani, M. and Khoshroo, A. (2014) High sensitive sensor based on functionalized carbon
                      nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin.
                      J Electroanal Chem, 717-718, 17–23.
                   58.  Neelgund, G.M. and Oki, A. (2011) Photocatalytic activity of CdS and Ag(2)S quantum dots deposited
                      on poly(amidoamine) functionalized carbon nanotubes. Appl Catal B, 110, 99–107.
                   59.  Liu, Q., Zhou, Q. and Jiang, G. (2014) Nanomaterials for analysis and monitoring of emerging chemi-
                      cal pollutants. TrAC Trends Anal Chem, 58, 10–22.
                   60.  Tonucci, M.C., Gurgel, L.V.A. and Aquino, S.F. de (2015) Activated carbons from agricultural bypro-
                      ducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfame-
                      thoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Ind Crops Prod, 74,
                      111–121.
                   61.  Duran, A., Tuzen, M. and Soylak, M. (2009) Preconcentration of some trace elements via using mul-
                      tiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater, 169, 466–471.

            56
                                                                                  Rev. Asoc. Col. Cienc.(Col.), 2020; 32: 42-62.
   51   52   53   54   55   56   57   58   59   60   61