Page 61 - ACCB 2020
P. 61

Nanotechnology for Combating Microbial Contamination. do Nascimento  et al



                       of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within
                       the gut of Daphnia magna. Aquat Toxicol, 162, 1–9.
                    145. Antonietti, M. (2001) Surfactants for novel templating applications. Curr Opin Colloid Interface Sci,
                       6(3), 244-248.
                    146. Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S., 2007. Comparative
                       toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl  to a freshwater microalga (Pseudokirchneriella
                                                                  2
                       subcapitata): the importance of particle solubility. Environ Sci Technol, 41, 8484–8490.
                    147. John, V.T., Simmons, B., McPherson, G.L. and Bose, A. (2002) Recent developments in materials
                       synthesis in surfactant systems. Curr  Opin Col Interf Sci, 7(5–6), 288-295.
                    148. Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., Tan, W. (2001) Synthesis and cha-
                       racterization of silica-coated iron oxide nanoparticles in microemulsion:  the effect of nonionic surfac-
                       tants. Langmuir, 17, 2900–2906.
                    149. Mauter, M.S. and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials.
                       Environ Sci Technol, 42, 5843–5859.
                    150. Yang, K. and Xing,B. (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous
                       phase: Polanyi theory and its application. Chem Rev, 110, 5989–6008.
                    151. Karn, B., Kuiken, T. and Otto, M. (2009) Nanotechnology and in situ remediation: a review of the
                       benefi ts and potential risks. Environ Health Perspect, 117,1823-1831
                    152. Handy, R.D., Von Der Kammer, F., Lead, J.R., Hassellöv, M., Owen, R. and Crane, M. (2008) The
                       ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17(4), 287-314
                    153. Glassman, H.N. (1948) Surface active agents and their application in bacteriology. Bacteriol Rev, 12,
                       105–148.
                    154. Jiang, J., Oberdörster, G. and Biswas, P. (2009) Characterization of size, surface charge, and agglome-
                       ration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11, 77–89.
                    155. Wang, D., Lin, Z., Yao, Z. and Yu, H. (2014) Surfactants present complex joint effects on the toxicities
                       of metal oxide nanoparticles. Chemosphere, 108, 70–75.
                    156. Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M. et al (2006) Functionaliza-
                       tion density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett, 161,
                       135–142.
                    157. Wallace, W., Keane, M., Murray, D., Chisholm, W., Maynard, A. and Ong, T. (2007) Phospholipid
                       lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts, in: Ma-
                       ynard, A., Pui, D.H. (Eds.), Nanotechnology and Occupational Health SE - 4. Springer Netherlands,
                       pp. 23–38.
                    158. 158. Zhang, L.W., Zeng, L., Barron, A.R. and Monteiro-Riviere, N.A. (2007) Biological interactions
                       of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol, 26,
                       103–113.
                    159. Lovern, S.B. and Klaper, R. (2006) Daphnia magna mortality when exposed to titanium dioxide and
                       fullerene (C60) nanoparticles. Environ Toxicol Chem, 25, 1132–1137.
                    160. Baalousha, M. (2009) Aggregation and disaggregation of iron oxide nanoparticles: infl uence of particle
                       concentration, pH and natural organic matter. Sci Total Environ, 407, 2093–2101.
                    161. Ouyang, K., Walker, S., Yu, X-Y , Gao, C-H , Huang, Q and Cai, P. (2018) Metabolism, survival, and
                       gene expression of pseudomonas putida to hematite nanoparticles mediated by surface-bound humic
                       acid. Env Sci Nano,  5, 682-695.
                    162. Gao, J., Powers, K., Wang, Y., Zhou, H., Roberts, S.M., Moudgil, B.M. et al  (2012) Infl uence of
                       Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere
                       89, 96–101.
                    163. Li, M., Pokhrel, S., Jin, X., Mädler, L., Damoiseaux, R. and Hoek, E.M.V. (2011) Stability, bioavai-
                       lability, and bacterial toxicity of Zno and iron-doped Zno nanoparticles in aquatic media. Environ Sci
                       Technol, 45, 755–761.
                    164. Yang, S.P., Bar-Ilan, O., Peterson, R.E., Heideman, W., Hamers, R.J. and Pedersen, J.A. (2013) In-
                       fl uence of humic acid on titanium dioxide nanoparticle toxicity to developing Zebrafi sh. Environ Sci
                       Technol, 47, 4718–4725.
                    165. Wang, Z., Quik, J.T.K., Song, L., Van Den Brandhof, E.-J., Wouterse, M. and Peijnenburg, W.J.G.M.




                                                                                                             61
            Rev. Asoc. Col. Cienc.(Col.), 2020; 32: 42-62.
   56   57   58   59   60   61   62   63   64   65   66