revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Versiones

Archivos suplementarios

PDF 48-65

Palabras clave

Zingiberaceae
Hedychium
ultrasonido
microondas
Sitophilus Zingiberaceae
Hedychium
ultrasound
microwave
Sitophilus

Cómo citar

Ríos Vásquez, E. ., Estrada Mesa, N. M. ., & Ospina Balvuena, Y. . (2025). Comparación de diferentes métodos en la extracción de aceite esencial de rizomas de Hedychium coccineum: composición química y actividad biológica . REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(37), Art 48–65. https://doi.org/10.47499/revistaaccb.v1i37.328

Resumen

Introducción. Las plantas de la familia Zingiberaceae constituyen una fuente relevante de metabolitos bioactivos con aplicaciones terapéuticas y biotecnológicas. Entre ellas, Hedychium coccineum se caracteriza por rizomas ricos en aceites esenciales AE con propiedades antimicrobianas, antioxidantes y repelentes de insectos. Objetivo. Optimizar la extracción de AE a partir de rizomas de H. coccineum mediante hidrodestilación asistida por microondas (HDAM), comparándola con pretratamiento ultrasónico (US+HDAM) y con hidrodestilación convencional (HD). Materiales y métodos. Se empleó un diseño Box-Behnken para evaluar tiempo, potencia y relación sólido-líquido, los AE se caracterizaron por cromatografía de gases-espectrometría de masas y analizaron sus propiedades fisicoquímicas, consumo energético, emisiones de CO₂, actividad repelente frente a Sitophilus spp. y capacidad antioxidante mediante el ensayo DPPH. Resultados. El modelo de optimización mostró alta confiabilidad (R² = 0.9962, p < 0.0001) y permitió determinar condiciones óptimas para HDAM (50 min, 600 W, 1:11 g/mL), con un rendimiento de 0.2219 %. El método US+HDAM alcanzó el mayor rendimiento (0.3045 %), superando significativamente a HD (0.1846 %), además de reducir el consumo energético (≤0.535 kWh) y las emisiones de CO₂ (≤0.428 kg) en comparación con la técnica convencional (2.2 kWh; 1.76 kg). Se identificaron 32 compuestos principales, entre ellos linalool, (E)-nerolidol, acetato de bornilo y artemisia cetona. El AE mostró fuerte efecto repelente dependiente de dosis y tiempo, con porcentajes cercanos al 100 % a concentraciones ≥0.503 μL/cm² durante las primeras 12 horas, así como actividad antioxidante moderada con un IC₅₀ de 24.79 mg/mL. Conclusión. Se evidencia que las tecnologías emergentes mejoran la eficiencia, reducen el impacto ambiental y preservan la composición química del aceite, posicionando a H. coccineum como una fuente prometedora de compuestos con aplicaciones en biocontrol y formulaciones terapéuticas.

   

 

 

https://doi.org/10.47499/revistaaccb.v1i37.328

Citas

Kumar V, MarkoviĆ T, Emerald M, Dey A. Herbs: Composition and Dietary Importance. Encycl. Food Health. 2016 Jan 1;332-7. https://doi.org/10.1016/B978-0-12-384947-2.00376-7

https://doi.org/10.1016/B978-0-12-384947-2.00376-7

Yit K-H, Zainal-Abidin Z. Antimicrobial Potential of Natural Compounds of Zingiberaceae Plants and their Synthetic Analogues: A Scoping Review of In vitro and In silico Approaches. Curr Top Med Chem. 2024 May 1;24(13):1158-84. https://doi.org/10.2174/0115680266294573240328050629 PMID: 38584545

https://doi.org/10.2174/0115680266294573240328050629

Arya S, Kumar R, Prakash O, Kumar S, Mahawer SK, Chamoli S, et al. Chemical Composition and Biological Activities of Hedychium coccineum Buch.-Ham. ex Sm. Essential Oils from Kumaun Hills of Uttarakhand. Molecules. 2022 Jul 28;27(15):4833. https://doi.org/10.3390/MOLECULES27154833 PMID: 35956784

https://doi.org/10.3390/molecules27154833

Tian M, Xie D, Hong Y, Ding F, Wu X, Tang D. Anti-inflammatory effects and related mechanisms in vitro and in vivo of Hedychium coccineum rhizome essential oil. J Ethnopharmacol. 2024 Jun 28;328:118103. https://doi.org/10.1016/J.JEP.2024.118103 PMID: 38527573

https://doi.org/10.1016/j.jep.2024.118103

Saldaña-Mendoza SA, Chávez-González ML, Ramírez-Guzmán N, Pacios-Michelena S, Aguilar CN. Technological trends in the extraction of essential oils. Environ. Qual. Manag. 2022 Sep 1;32(1):441-50. https://doi.org/10.1002/TQEM.21882

https://doi.org/10.1002/tqem.21882

Kant R, Kumar A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain Chem Pharm. 2022 Dec 1;30:100829. https://doi.org/10.1016/J.SCP.2022.100829

https://doi.org/10.1016/j.scp.2022.100829

More PR, Jambrak AR, Arya SS. Green, environment-friendly and sustainable techniques for extraction of food bioactive compounds and waste valorization. Trends Food Sci. Technol. 2022 Oct 1;128:296-315. https://doi.org/10.1016/J.TIFS.2022.08.016

https://doi.org/10.1016/j.tifs.2022.08.016

Jyotsna B, Patil S, Prakash YS, Rathnagiri P, Kavi Kishor PB, Jalaja N. Essential oils from plant resources as potent insecticides and repellents: Current status and future perspectives. Biocatal. Agric. Biotechnol. 2024 Oct 1;61:103395. https://doi.org/10.1016/J.BCAB.2024.103395

https://doi.org/10.1016/j.bcab.2024.103395

Cano Botero JL, Ospina Balvuena Y, Gutiérrez Cifuentes JA, Sepúlveda Nieto M del P, Ríos Vásquez E. Optimization of a novel Renealmia ligulata (Zingiberaceae) essential oil extraction method through microwave-assisted hydrodistillation. Univ Sci (Bogota). 2024;29(2):108-25. https://doi.org/10.11144/Javeriana.SC292.ooan

https://doi.org/10.11144/Javeriana.SC292.ooan

Horwitz W. AOAC OFFICIAL METHODS OF ANALYSIS (2000). 17th Ed. Vol. 41, AOAC INTERNATIONAL. 2000. https://doi.org/10.1108/nfs.2011.01741eaa.022

https://doi.org/10.1108/nfs.2011.01741eaa.022

Drinić Z, Pljevljakušić D, Janković T, Zdunić G, Bigović D, Šavikin K. Hydro-distillation and microwave-assisted distillation of Sideritis raeseri: Comparison of the composition of the essential oil, hydrolat and residual water extract. Sustain Chem Pharm. 2021 Dec 1;24:100538. https://doi.org/10.1016/J.SCP.2021.100538

https://doi.org/10.1016/j.scp.2021.100538

Chen Y, Xu F, Pang M, Jin X, Lv H, Li Z, et al. Microwave-assisted hydrodistillation extraction based on microwave-assisted preparation of deep eutectic solvents coupled with GC-MS for analysis of essential oils from clove buds. Sustain Chem Pharm. 2022 Jun 1;27:100695. https://doi.org/10.1016/J.SCP.2022.100695

https://doi.org/10.1016/j.scp.2022.100695

Adams RP. Identification of essential oil components by gas chromatography/mass spectroscopy. 4th ed. Vol. 1. Allured Pub. Corp; 2017. 1-809 p.

Ouabou M, Annaz H, Maggi F, Ferrati M, Spinozzi E, El Amrani A. Chemical profile, insecticidal and repellent activities of four underexplored Moroccan essential oils against Sitophilus oryzae. J Stored Prod Res. 2025 May 1;111:102552. https://doi.org/10.1016/J.JSPR.2025.102552

https://doi.org/10.1016/j.jspr.2025.102552

Torralbo Cabrera YP, Pino Benítez N, Stashenko EE. Actividad repelente e insecticida de dos aceites esenciales de Piper del Nor-Occidente del Pacífico Colombiano. Rev. Asoc. Colomb. Cienc. Biol. 2022 Dec 18;59-67. https://doi.org/10.47499/revistaaccb.v1i34.263

https://doi.org/10.47499/revistaaccb.v1i34.263

Ray A, Jena S, Dash B, Kar B, Halder T, Chatterjee T, et al. Chemical diversity, antioxidant and antimicrobial activities of the essential oils from Indian populations of Hedychium coronarium Koen. Ind Crops Prod. 2018 Feb 1;112:353-62. https://doi.org/10.1016/J.INDCROP.2017.12.033

https://doi.org/10.1016/j.indcrop.2017.12.033

Hu Z, Wang P, Zhou H, Li Y. Extraction, characterization and in vitro antioxidant activity of polysaccharides from Carex meyeriana Kunth using different methods. Int J Biol Macromol. 2018 Dec 1;120:2155-64. https://doi.org/10.1016/J.IJBIOMAC.2018.09.125 PMID: 30248430

https://doi.org/10.1016/j.ijbiomac.2018.09.125

Li S, Chen L, Zhou Y. Essential oil obtained from Chrysanthemum indicum var. aromaticum leaf using solvent-less microwave irradiation-induced hydrodistillation and extraction in situ. Sustain Chem Pharm. 2023 Mar 13;36:2352-5541. https://doi.org/10.1016/j.scp.2023.101259

https://doi.org/10.1016/j.scp.2023.101259

Boudraa H, Kadri N, Mouni L, Madani K. Microwave-assisted hydrodistillation of essential oil from fennel seeds: Optimization using Plackett-Burman design and response surface methodology. J Appl Res Med Aromat Plants. 2021 May 1;23:100307. https://doi.org/10.1016/J.JARMAP.2021.100307

https://doi.org/10.1016/j.jarmap.2021.100307

Kusuma HS, Lestari FW, Sari TA, Mukhlisin F, Mahfud M, Sharma SK, et al. Extraction of essential oil from fresh basil leaves (Ocimum basilicum L.) using solvent-free microwave extraction method: Extraction parameter optimization, electric consumption, and CO2 emission study. Food and Humanity. 2023 Dec 1;1:1055-63. https://doi.org/10.1016/J.FOOHUM.2023.08.025

https://doi.org/10.1016/j.foohum.2023.08.025

Rizkita CW, Qadariyah L, Mahfud M, Sukardi S. Box Behnken design for optimization of essential oil extraction of ginger (zingibereceae) by microwave hydrodistillation method. Egypt J Chem. 2025 Apr 1;68(4):333-41. https://doi.org/10.21608/EJCHEM.2024.301057.9978

https://doi.org/10.21608/ejchem.2024.301057.9978

Nabila AR, Mahfud M. Oil extraction cardamom seed (Amomum compactum) by microwave hydro-diffusion and gravity method: Optimization using box-behnken design. AIP Conf Proc. 2025 Jun 18;3309(1). https://doi.org/10.1063/5.0265281/3350434

https://doi.org/10.1063/5.0265281

Zhang Q, Li C, Mi S, Xu X, He Z, Wang L, et al. Optimized essential oil extraction method based on salt solution-enhanced homogenization pretreatment and microwave extraction for Kaempferia galanga L. Microchem. J. 2025 Jun 1;213:113661. https://doi.org/10.1016/J.MICROC.2025.113661

https://doi.org/10.1016/j.microc.2025.113661

Zhang H, Yan H, Li Q, Lin H, Wen X. Identification of VOCs in essential oils extracted using ultrasound- and microwave-assisted methods from sweet cherry flower. Sci. Rep. 2021 Jan 13;11(1):1-13. https://doi.org/10.1038/S41598-020-80891-0 PMID: 33441964

https://doi.org/10.1038/s41598-020-80891-0

Hedayati S, Tarahi M, Baeghbali V, Tahsiri Z, Hashempur MH. Mint (Mentha spp.) essential oil extraction: from conventional to emerging technologies. Phytochem. Rev. 2024 Aug ;24(4):3157-78. https://doi.org/10.1007/S11101-024-10020-6/FIGURES/6

https://doi.org/10.1007/s11101-024-10020-6

Chen F, Su X, Yan T, Fu X, Wang Y, Luo D, et al. Homogenate-ultrasonic pretreatment followed by microwave hydrodistillation of essential oil from rosemary (Rosmarinus officinalis L.) leaves: Kinetic, chemical composition, and biological activity. Sustain Chem Pharm. 2024 Dec 1;42:101744. https://doi.org/10.1016/J.SCP.2024.101744

https://doi.org/10.1016/j.scp.2024.101744

Suttiarporn P, Seangwattana T, Srisurat T, Kongitthinon K, Chumnanvej N, Luangkamin S. Enhanced extraction of clove essential oil by ultrasound and microwave assisted hydrodistillation and their comparison in antioxidant activity. Curr. Res. Green Sustain. Chem. 2024 Jan 1;8:100411. https://doi.org/10.1016/J.CRGSC.2024.100411

https://doi.org/10.1016/j.crgsc.2024.100411

Jia MZ, Fu XQ, Deng L, Li ZL, Dang YY. Phenolic extraction from grape (Vitis vinifera) seed via enzyme and microwave co-assisted salting-out extraction. Food Biosci. 2021 Apr 1;40:100919. https://doi.org/10.1016/J.FBIO.2021.100919

https://doi.org/10.1016/j.fbio.2021.100919

Sarah M, Ardiansyah D, Misran E, Madinah I. Extraction of citronella oil from lemongrass (Cymbopogon winterianus) by sequential ultrasonic and microwave-assisted hydro-distillation. Alex. Eng. J. 2023 May 1;70:569-83. https://doi.org/10.1016/J.AEJ.2023.03.019

https://doi.org/10.1016/j.aej.2023.03.019

Pan X, Zhang X, Meng Y, Yang Y, Zhang H, Liu T, et al. Developing an effective approach based on microwave distillation and extraction using deep eutectic solvents for multiple target analytes prepared from Eleutherococcus senticosus fruits. Microchem. J. 2024 Dec 1;207:111905. https://doi.org/10.1016/J.MICROC.2024.111905

https://doi.org/10.1016/j.microc.2024.111905

Zhang Q, Ge D, Mi S, Lu Q. An eco-friendly and effective method for isolating essential oil from fresh Kaempferia galanga L.: Process optimization based on entropy weight method and response surface methodology. Sustain Chem Pharm. 2025 Jun 1;45:102042. https://doi.org/10.1016/J.SCP.2025.102042

https://doi.org/10.1016/j.scp.2025.102042

Elyemni M, Louaste B, Nechad I, Elkamli T, Bouia A, Taleb M, et al. Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Sci. World J. 2019;2019. https://doi.org/10.1155/2019/3659432 PMID: 31057339

https://doi.org/10.1155/2019/3659432

Mande P, Sekar N. Comparative study of chemical composition, antibacterial and antioxidant activity of essential oils isolated from the seeds of Amomum subulatum by using microwave extraction and hydro-distillation methods. J. Indian Chem. Soc. 2021 Nov 1;98(11):100201. https://doi.org/10.1016/J.JICS.2021.100201

https://doi.org/10.1016/j.jics.2021.100201

Osae R, Apaliya MT, Kwaw E, Chisepo MTR, Yarley OPN, Antiri EA, et al. Drying techniques affect the quality and essential oil composition of Ghanaian ginger (Zingiber officinale Roscoe). Ind Crops Prod. 2021 Nov 15;172:114048. https://doi.org/10.1016/J.INDCROP.2021.114048

https://doi.org/10.1016/j.indcrop.2021.114048

Bettaieb Rebey I, Bourgou S, Ben Kaab S, Aidi Wannes W, Ksouri R, Saidani Tounsi M, et al. On the effect of initial drying techniques on essential oil composition, phenolic compound and antioxidant properties of anise (Pimpinella anisum L.) seeds. J. Food Meas. Charact. 2020 Feb 1;14(1):220-8. https://doi.org/10.1007/S11694-019-00284-4/METRICS

https://doi.org/10.1007/s11694-019-00284-4

Wang JZ, Du YS, Qi YT, Zhang C, Zhang ZR, Zhang HM, et al. Chemical Composition, Toxicity, and Repellency of Essential Oils from Three Hedychium Species Against Stored-Product Insects. Chem Biodivers. 2024 Apr 1;21(4). https://doi.org/10.1002/CBDV.202301711, PMID: 38372187

https://doi.org/10.1002/cbdv.202301711

Pajaro-Castro N, Caballero-Gallardo K, Olivero-Verbel J. Neurotoxic Effects of Linalool and β-Pinene on Tribolium castaneum Herbst. Mol. : J. Synth. Chem. Nat. Prod. Chem. 2017 Dec 1;22(12):2052. https://doi.org/10.3390/MOLECULES22122052 PMID: 29186788

https://doi.org/10.3390/molecules22122052

Lima AS, Nelson H, Junior PC, Costa-Junior LM, Monteiro OS, Guilherme J, et al. Anthelmintic effect of essential rhizome oil from Hedychium coronarium Koenig (Zingiberaceae) introd. Northeast. Braz. 2021; https://doi.org/10.1016/j.actatropica.2021.105912

https://doi.org/10.1016/j.actatropica.2021.105912

Dhifi W, Bellili S, Jazi S, Bahloul N, Mnif W, Nahar L, et al. Essential Oils' Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines. 2016 Sep 22;3(4):25. https://doi.org/10.3390/MEDICINES3040025 PMID: 28930135

https://doi.org/10.3390/medicines3040025

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Derechos de autor 2025 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Descargas

Los datos de descargas todavía no están disponibles.