Resumen
El agua es una necesidad universal que ha sido reportada por las Naciones Unidas (ONU) y la Organización Mundial de la Salud (OMS) como una prioridad. Existe una necesidad apremiante de acceso gratuito al agua potable para las poblaciones de los países en desarrollo. Además, las fuentes de agua de los países desarrollados también requieren atención debido a la presencia de un alto nivel de contaminantes emergentes. Por lo tanto, la nanotecnología parece ser una herramienta poderosa que podría usarse como sensores, filtros, superficies antibacterianas y nanoantimicrobianos. En esta revisión, hemos discutido la aplicación de las nanopartículas y los nanocompuestos para el tratamiento de aguas y aguas residuales. Además, el impacto de las nanopartículas libres como contaminantes emergentes en las plantas de tratamiento de agua, así como en las aguas subterráneas, merece más estudios.
Citas
Gorde, S.P. and Jadhav, V.M. (2013) Assessment of water quality parameters: a review. Int J Eng Res Appl 3, 2029-2035.
Bouabid, A. and Louis, G.E. (2015) Capacity factor analysis for evaluating water and sanitation infrastructure choices for developing communities J Environ Manage, 161, 335-343.
https://doi.org/10.1016/j.jenvman.2015.07.012
World Health Organization. Cholera, Number of Reported Cases (data by Country)." (2016) Global Health Observatory Data Repository, https://www.who.int/gho/epidemic_diseases/cholera/en/
World Health Organization (2008) Guidelines for drinking water quality., 3rd ed. Geneva. https://www.who.int/water_sanitation_health/publications/gdwq3rev/en/
Dohare, D., Deshpande, S. and Kotiya, A. (2014) Analysis of ground water quality parameters: a review. Res J Eng Sci 3, 26-31.
Ahmad,T.,Aadil, R., Ahmed, H., Rahman, U., Soares, B., Souza, S. et al (2019) Treatment and utilization of dairy industrial waste: a review. Trends Food Sci Tech, 88, 361-372
https://doi.org/10.1016/j.tifs.2019.04.003
WWAP (United Nations World Water Assessment Programme) (2015) The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO.http://www.unesco.org/new/en/natural-sciences/environment/water/wwap/ wwdr/2015-water-for-a-sustainable-world/
Mehndiratta, P., Jain, A., Srivastava, S. and Gupta, N. (2013) Environmental pollution and nanotechnology. Environ Pollut, 2(2), 49-58
https://doi.org/10.5539/ep.v2n2p49
Kumar, S., Ahlawat, W., Kumar, R. and Dilbaghi, N. (2015) Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron 70, 498-503.
https://doi.org/10.1016/j.bios.2015.03.062
Borah,P., Kumar, M. and Devi P. (2020) Types of inorganic pollutants: metals/metalloids, acids and organic forms. In 'Inorganic Pollutants in Water', Eds. Devi,P., Singh,P. and Kansal S.K., Elsevier, Amsterdam, Netherlands, 2020, pp- 17-31.
https://doi.org/10.1016/B978-0-12-818965-8.00002-0
Srinivasan, R. (2011) Advances in application of natural clay and its composites in removal of biological, organic, and inorganic contaminants from drinking water. Adv Mater Sci Eng, Article ID 872531, doi:10.1155/2011/872531
https://doi.org/10.1155/2011/872531
Qiu, Y., Zheng, Z., Zhou, Z. and Sheng, G.D. (2009) Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresour Technol 100, 5348-5351.
https://doi.org/10.1016/j.biortech.2009.05.054
Xu, R-kou, Xiao, S-cheng, Yuan, J-hua, Zhao, A-zhen, (2011) Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour Technol, 102, 10293-10298.
https://doi.org/10.1016/j.biortech.2011.08.089
Mohan, D., Sarswat, A., Ok, Y.S. and Pittman, C.U. (2014) Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent--a critical review. Bioresour Technol, 160, 191-202.
https://doi.org/10.1016/j.biortech.2014.01.120
Karakoyun, N., Kubilay, S., Aktas, N., Turhan, O., Kasimoglu, M., Yilmaz, S. et al. (2011) Hydrogel-biochar composites for effective organic contaminant removal from aqueous media. Desalination, 280, 319-325.
https://doi.org/10.1016/j.desal.2011.07.014
Khim, J.S., Lee, K.T., Kannan, K., Villeneuve, D.L., Giesy, J.P. and Koh, C.H. (2001) Trace organic contaminants in sediment and water from Ulsan Bay and its vicinity. Korea Arch Environ Contam Toxicol, 40, 141-150.
https://doi.org/10.1007/s002440010157
Klasson, K.T., Ledbetter, C.A., Uchimiya, M. and Lima, I.M. (2013) Activated biochar removes 100 % dibromochloropropane from field well water. Environ Chem Lett, 11, 271-275.
https://doi.org/10.1007/s10311-012-0398-7
Vijgen, J, Abhilash, P.C., Li, Y., Lal, R., Forter, M., Torres, J., et al (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers. Environ Sci Pollut Res 18, 152-162.
https://doi.org/10.1007/s11356-010-0417-9
Maes, M., Schouteden, S., Alaerts, L., Depla, D. and De Vos, D.E. (2011) Extracting organic contaminants from water using the metal-organic framework CrIII(OH)[middle dot]{O2C-C6H4-CO2}. Phys Chem Chem Phys, 13, 5587-5589.
https://doi.org/10.1039/c0cp01703e
Davydova, S.L. (1998) Heavy metals as main pollutants of the next century. Crit Rev Anal Chem, 28, 377-381.
https://doi.org/10.1080/10408349891199239
Järup, L. (2003) Hazards of heavy metal contamination. Br Med Bull 68, 167-182.
https://doi.org/10.1093/bmb/ldg032
Zhaoyong, Z., Abuduwaili, J. and Fengqing, J. (2015) Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China. Environ Monit Assess, 187, 1-13.
https://doi.org/10.1007/s10661-014-4191-x
Gul, N., Shah, M.T., Khan, S., Khattak, N.U. and Muhammad, S. (2015) Arsenic and heavy metals contamination, risk assessment and their source in drinking water of the Mardan District, Khyber Pakhtunkhwa, Pakistan. J Water Health, 13(4):1073-1084.
https://doi.org/10.2166/wh.2015.011
Brraich, O.S. and Jangu, S. (2015) Evaluation of water quality pollution indices for heavy metal contamination monitoring in the water of Harike Wetland (Ramsar Site), India. Intl J Sci Res Publ, 5, 1-6.
D. Paul (2017) Research on heavy metal pollution of river Ganga: a review Ann. Agrar. Sci, 15(2):278-286
https://doi.org/10.1016/j.aasci.2017.04.001
L. Joseph, B-M Jun, J Flora, C.Park, Y.Yoon (2019) Removal of heavy metals from water sources in the developing world using low-cost materials: a review. Chemosphere, 229: 142-159
https://doi.org/10.1016/j.chemosphere.2019.04.198
Rathoure, A. (2020) Heavy metal pollution and its management: bioremediation of heavy metal. In 'Waste management: concepts, methodologies, tools, and applications', Eds Rathoure A., IGI Global, pp1013-1036.
https://doi.org/10.4018/978-1-7998-1210-4.ch046
Dixit, R., Wasiullah, Malaviya, D., Pandiyan, K., Singh, U.B., Sahu, A., et al (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189-2212
https://doi.org/10.3390/su7022189
Hu, C., Deng, Z., Xie, Y., Chen, X. and Li, F. (2015) The risk assessment of sediment heavy metal pollution in the East Dongting Lake Wetland. J Chem 2015, 1-8.
https://doi.org/10.1155/2015/462605
https://doi.org/10.1155/2015/835487
Khurana, I. and Sen, R. (2007) Drinking water quality in rural India: Issues and approaches. Water Aid. https://www.indiawaterportal.org/sites/indiawaterportal.org/files/Drinking%20Water%20Quality%20in%20Rural%20India_Issues%20and%20Approaches_WaterAid_2008.pdf
Ashbolt, N.J. (2004) Microbial contamination of drinking water and disease outcomes in developing regions. Toxicology198(1-3), 229-238.
https://doi.org/10.1016/j.tox.2004.01.030
Ashbolt, N.J. (2015) Microbial aontamination of drinking water and human health from community water systems. Curr Environ Heal reports, 2, 95-106.
https://doi.org/10.1007/s40572-014-0037-5
Ye, B., Yang, L., Li, Y., Wang, W. and Li, H.,(2013) Water sources and their protection from the impact of microbial contamination in rural areas of Beijing, China Intl J Environ Res Public Health, 10, 879-891.
https://doi.org/10.3390/ijerph10030879
Singh,A., Das,S., Singh,S., Pradhan,N., Gajamer,V., Kumar, S. et al (2019) Physicochemical parameters and alarming coliform count of the potable water of Eastern Himalayan State Sikkim: an indication of severe fecal contamination and immediate health risk. Front Public Health, 7:174.
https://doi.org/10.3389/fpubh.2019.00174
Jung, A.V., Cann, P. Le, Roig, B., Thomas, O., Baurès, E. and Thomas, M.F. (2014) Microbial contamination detection in water resources: Interest of current optical methods, trends and needs in the context of climate change. Intl J Environ Res Public Health, 11(4), 4292-4310.
https://doi.org/10.3390/ijerph110404292
Daley, R., Jamieson, D., Rainham,D. and Hansen, L.T. (2018) Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic. Environ Sci Pollut Res, 25:32860-32872.
https://doi.org/10.1007/s11356-017-8566-8
Kilungo,A.P., Carlton-Carew, N. and Powers, L.S. (2013) Continuous real-time detection of microbial contamination in water using intrinsic fluorescence. J Biosens Bioelectron, S12:002. doi:10.4172/2155-6210.S12-002
https://doi.org/10.4172/2155-6210.S12-002
Lavanya, V. and Ravichandran, S. (2013) Microbial contamination of drinking water at the source and household storage level in the peri-urban area of southern Chennai and its implication on health, India. J Public Heal, 21, 481-488.
https://doi.org/10.1007/s10389-013-0573-8
Li, L., Sun, Z., Li, H. and Keener, T.C. (2012) Effects of activated carbon surface properties on the adsorption of volatile organic compounds. J Air Waste Manage Assoc, 62, 1196-1202.
https://doi.org/10.1080/10962247.2012.700633
Kütahyalı, C. and Eral, M. (2004) Selective adsorption of uranium from aqueous solutions using activated carbon prepared from charcoal by chemical activation. Sep Purif Technol, 40(2), 109-114
https://doi.org/10.1016/j.seppur.2004.01.011
UNICEF, 2008. Promotion of household wa ter treatment and safe storage in unicef wash programmes. https://www.unicef.org/wash/files/Scaling_up_HWTS_Jan_25th_with_ comments.pdf
Agrawal, V.K. and Bhalwar, R. (2009) Household water purification: low-cost interventions. Med J Armed Forces India, 65(3): 260-263.
https://doi.org/10.1016/S0377-1237(09)80019-1
Ahmed, T., Imdad, S., Yaldram, K., Butt, N.M. and Pervez, A. (2013) Emerging nanotechnology-based methods for water purification: a review. Desalin Water Treat 52, 4089-4101.
https://doi.org/10.1080/19443994.2013.801789
S. Kumar, W. Ahlawat, R. Kumar and N. Dilbaghi. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare. Biosens Bioelectron, 2015, 70, 498-503.
https://doi.org/10.1016/j.bios.2015.03.062
Sun, H., Kwan, C., Suvorova, A., Ang, H.M., Tadé, M.O.and Wang, S. (2014) Catalytic oxidation of organic pollutants on pristine and surface nitrogen-modified carbon nanotubes with sulfate radicals. Appl Catal B Environ, 154-155, 134-141.
https://doi.org/10.1016/j.apcatb.2014.02.012
Pan, B. and Xing, B. (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Techno,l 42(24), 9005-9013.
https://doi.org/10.1021/es801777n
Ndiaye, A., Bonnet, P., Pauly, A., Dubois, M., Brunet, J., Varenne, C., et al (2013) Noncovalent functionalization of single-wall carbon nanotubes for the elaboration of gas sensor dedicated to BTX type gases: the case of toluene. J Phys Chem C 117, 20217-20228.
https://doi.org/10.1021/jp402787f
Lu, C., Chung, Y.-L. and Chang, K.-F. (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res, 39, 1183-1189.
https://doi.org/10.1016/j.watres.2004.12.033
Azamat, J., Khataee, A., Joo, S.W. and Yin, B. (2015) Removal of trihalomethanes from aqueous solution through armchair carbon nanotubes: a molecular dynamics study. J Mol Graph Model, 57, 70-75.
https://doi.org/10.1016/j.jmgm.2015.01.008
Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, A. (2005) Raman spectroscopy of carbon nanotubes. Phys Rep, 409, 47-99.
https://doi.org/10.1016/j.physrep.2004.10.006
Koh, B. and Cheng, W. (2014) Mechanisms of carbon nanotube aggregation and the reversion of carbon nanotube aggregates in aqueous medium. Langmuir, 30, 10899-10909.
https://doi.org/10.1021/la5014279
Ji, L., Chen, W., Duan, L. and Zhu, D, (2009) Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environ Sci Technol, 43, 2322-2327.
https://doi.org/10.1021/es803268b
Kim, B., Lim, D., Jin, H.J., Lee, H.Y., Namgung, S., Ko, Y., et al (2012) Family-selective detection of antibiotics using antibody-functionalized carbon nanotube sensors. Sensors Actuators B Chem, 166-167, 193-199.
https://doi.org/10.1016/j.snb.2012.02.039
Song, X.-Y., Ha, W., Chen, J. and Shi, Y.-P. (2014) Application of β-cyclodextrin-modified, carbon nanotube-reinforced hollow fiber to solid-phase microextraction of plant hormones. J Chromatogr, A 1374, 23-30.
https://doi.org/10.1016/j.chroma.2014.11.029
Dai, B., Cao, M., Fang, G., Liu, B., Dong, X., Pan, M., et al (2012) Schiff base-chitosan grafted multiwalled carbon nanotubes as a novel solid-phase extraction adsorbent for determination of heavy metal by ICP-MS. J Hazard Mater, 219-220, 103-110.
https://doi.org/10.1016/j.jhazmat.2012.03.065
Tian, Y., Gao, B., Morales, V.L., Wu, L., Wang, Y., Muñoz-Carpena, R., et al (2012) Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chem Eng J, 210, 557-563.
https://doi.org/10.1016/j.cej.2012.09.015
Mazloum-Ardakani, M. and Khoshroo, A. (2014) High sensitive sensor based on functionalized carbon nanotube/ionic liquid nanocomposite for simultaneous determination of norepinephrine and serotonin. J Electroanal Chem, 717-718, 17-23.
https://doi.org/10.1016/j.jelechem.2013.12.034
Neelgund, G.M. and Oki, A. (2011) Photocatalytic activity of CdS and Ag(2)S quantum dots deposited on poly(amidoamine) functionalized carbon nanotubes. Appl Catal B, 110, 99-107.
https://doi.org/10.1016/j.apcatb.2011.08.031
Liu, Q., Zhou, Q. and Jiang, G. (2014) Nanomaterials for analysis and monitoring of emerging chemical pollutants. TrAC Trends Anal Chem, 58, 10-22.
https://doi.org/10.1016/j.trac.2014.02.014
Tonucci, M.C., Gurgel, L.V.A. and Aquino, S.F. de (2015) Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Ind Crops Prod, 74, 111-121.
https://doi.org/10.1016/j.indcrop.2015.05.003
Duran, A., Tuzen, M. and Soylak, M. (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater, 169, 466-471.
https://doi.org/10.1016/j.jhazmat.2009.03.119
Yao, W., Ni, T., Chen, S., Li, H. and Lu, Y. (2014) Graphene/Fe3O4@polypyrrole nanocomposites as a synergistic adsorbent for Cr(VI) ion removal. Compos Sci Technol, 99, 15-22.
https://doi.org/10.1016/j.compscitech.2014.05.007
Yang, K. and Xing, B. (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev, 110, 5989-6008.
https://doi.org/10.1021/cr100059s
Mishra, A.K. and Ramaprabhu, S. (2011) Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination, 282, 39-45.
https://doi.org/10.1016/j.desal.2011.01.038
Jung, C., Son, A., Her, N., Zoh, K.-D., Cho, J. and Yoon, Y. (2015) Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: a review. J Ind Eng Chem, 27, 1-11.
https://doi.org/10.1016/j.jiec.2014.12.035
Jahangiri-Rad, M., Nadafi, K., Mesdaghinia, A., Nabizadeh, R., Younesian, M. and Rafiee, M. (2013) Sequential study on reactive blue 29 dye removal from aqueous solution by peroxy acid and single wall carbon nanotubes: experiment and theory. Iranian J Environ Health Sci Eng 10, 5.
https://doi.org/10.1186/1735-2746-10-5
Fan, L., Luo, C., Li, X., Lu, F., Qiu, H. and Sun, M. (2012) Fabrication of novel magnetic chitosan grafted with graphene oxide to enhance adsorption properties for methyl blue. J Hazard Mater, 215-216, 272-279.
https://doi.org/10.1016/j.jhazmat.2012.02.068
Mahmoudi, M., Sant, S., Wang, B., Laurent, S.and Sen, T. (2011) Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev, 63, 24-46.
https://doi.org/10.1016/j.addr.2010.05.006
Petri-Fink, A., Steitz, B., Finka, A., Salaklang, J. and Hofmann, H. (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm, 68, 129-137.
https://doi.org/10.1016/j.ejpb.2007.02.024
Yean, S., Cong, L., Yavuz, C.T., Mayo, J.T., Yu, W.W., Kan, A.T., et al (2005) Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res, 20, 3255-3264.
https://doi.org/10.1557/jmr.2005.0403
Shahryari, T., Mostafavi, A., Afzali, D. and Rahmati, M. (2019) Enhancing cadmium removal by lowcost nanocomposite adsorbents from aqueous solutions; a continuous system. Comp Part B: Eng, 173, 106963.
https://doi.org/10.1016/j.compositesb.2019.106963
Burks, T., Avila, M., Akhtar, F., Göthelid, M., Lansåker, P.C., Toprak, M.S. et al (2014) Studies on the adsorption of chromium(VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci, 425, 36-43.
https://doi.org/10.1016/j.jcis.2014.03.025
Xu, P., Zeng, G.M., Huang, D.L., Feng, C.L., Hu, S., Zhao, M.H. et al (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ, 424, 1-10.
https://doi.org/10.1016/j.scitotenv.2012.02.023
Zhang, S., Jiao, Z. and Yao, W. (2014) A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples. J Chromatogr A, 1371, 74-81.
https://doi.org/10.1016/j.chroma.2014.10.088
Qin, Y., Long, M., Tan, B. and Zhou, B. (2014) RhB adsorption performance of magnetic adsorbent Fe3O4/RGO composite and its regeneration through a Fenton-like reaction. Nano-Micro Lett, 6, 125-135.
https://doi.org/10.1007/BF03353776
Chen, M., Jiang, W., Wang, F., Shen, P., Ma, P., Gu, J. et al (2013) Synthesis of highly hydrophobic floating magnetic polymer nanocomposites for the removal of oils from water surface. Appl Surf Sci, 286, 249-256.
https://doi.org/10.1016/j.apsusc.2013.09.059
Alves, O.L., Nascimento, R.O. do, Martinez, D.S.T., Rodrigues, O.E.D. and Moraes, A.C.M. (2013) Processo de obtenção de nanocompósitos auto-suportados de fosfato de cério fibroso (CeP) e nanotubos de carbono funcionalizados (NTC-FUNC), os nanocompósitos obtidos pelo dito processo e uso dos mesmos. BR 10 2013 010433 7.
Sahu, J.N., Karri, R.R.., Zabed,H.M.,Shams, S., Qi, X. (2019). Current perspectives and future prospects of nano-biotechnology in wastewater treatment. Sep Purf Rev, 0, 1-20.
https://doi.org/10.1080/15422119.2019.1630430
Dougna, A.A., Gombert, B., Kodom, T., Djaneye-Boundjou, G., Boukari, S.O.B., Leitner, N.K.V. et al (2015) Photocatalytic removal of phenol using titanium dioxide deposited on different substrates: effect of inorganic oxidants. J Photochem Photobiol A Chem, 305, 67-77.
https://doi.org/10.1016/j.jphotochem.2015.02.012
Tsoukleris, D.S., Maggos, T., Vassilakos, C. and Falaras, P. (2007) Photocatalytic degradation of volatile organics on TiO2 embedded glass spherules. Catal Today, 129, 96-101.
https://doi.org/10.1016/j.cattod.2007.06.047
Fotiou, T., Triantis, T.M., Kaloudis, T., Papaconstantinou, E. and Hiskia, A. (2014) Photocatalytic degradation of water taste and odour compounds in the presence of polyoxometalates and TiO2: Intermediates and degradation pathways. J Photochem Photobiol A Chem, 286, 1-9.
https://doi.org/10.1016/j.jphotochem.2014.04.013
Chong, M.N., Jin, B., Chow, C.W.K. and Saint, C. (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res, 44, 2997-3027.
https://doi.org/10.1016/j.watres.2010.02.039
Wahab, R., Hwang, I.H., Kim, Y.-S., Musarrat, J., Siddiqui, M.A., Seo, H.-K. et al (2011) Non-hydrolytic synthesis and photo-catalytic studies of ZnO nanoparticles. Chem Eng J, 175, 450-457.
https://doi.org/10.1016/j.cej.2011.09.055
Kaur, R. and Pal, B. (2012) Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au-TiO2 photocatalysis. J Mol Catal A Chem, 355, 39-43.
https://doi.org/10.1016/j.molcata.2011.11.022
Prabhakaran, D., Nanjo, H. and Matsunaga, H. (2007) Naked eye sensor on polyvinyl chloride platform of chromo-ionophore molecular assemblies: a smart way for the colorimetric sensing of toxic metal ions. Anal Chim Acta, 601, 108-117.
https://doi.org/10.1016/j.aca.2007.08.032
Elad, T. and Belkin, S. (2013) Broad spectrum detection and "barcoding" of water pollutants by a genome-wide bacterial sensor array. Water Res, 47, 3782-90.
https://doi.org/10.1016/j.watres.2013.04.011
Guijarro,C., Fuchs,K., Bohrn, U., Stütz, E. and Wölfl, S. (2015) Simultaneous detection of multiple bioactive pollutants using a multiparametric biochip for water quality monitoring Biosens Bioelectron, 72, 71-79.
https://doi.org/10.1016/j.bios.2015.04.092
Ding, N., Zhao, H., Peng, W., He, Y., Zhou, Y., Yuan, L. et al (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids Surfaces A Physicochem Eng Asp, 395,161-167.
https://doi.org/10.1016/j.colsurfa.2011.12.024
Li, Y.L., Leng, Y.M., Zhang, Y.J., Li, T.H., Shen, Z.Y. and Wu, A.G. (2014) A new simple and reliable Hg2+ detection system based on anti-aggregation of unmodified gold nanoparticles in the presence of O-phenylenediamine Sensors Actuators B Chem, 200, 140-146.
https://doi.org/10.1016/j.snb.2014.04.039
Farhadi, K., Forough, M., Molaei, R., Hajizadeh, S. and Rafipour, A. (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors Actuators B Chem, 161, 880-885.
https://doi.org/10.1016/j.snb.2011.11.052
Wang, G.-L., Zhu, X.-Y., Jiao, H.-J., Dong, Y.-M. and Li, Z.-J. (2012) Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens Bioelectron, 31, 337-342.
https://doi.org/10.1016/j.bios.2011.10.041
Alizadeh, A., Khodaei, M.M., Hamidi, Z. and Shamsuddin, M. bin (2014) Naked-eye colorimetric detection of Cu2+ and Ag+ ions based on close-packed aggregation of pyridines-functionalized gold nanoparticles. Sensors Actuators B Chem, 190, 782-791.
https://doi.org/10.1016/j.snb.2013.09.020
Xin, X., Sun, S., Li, H., Wang, M. and Jia, R. (2015) Electrochemical bisphenol A sensor based on core-shell multiwalled carbon nanotubes/graphene oxide nanoribbons. Sensors Actuators B Chem, 209, 275-280.
https://doi.org/10.1016/j.snb.2014.11.128
Cabral, J.P.S. (2010) Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health, 7, 3657-3703.
https://doi.org/10.3390/ijerph7103657
Bindhu, M.R. and Umadevi, M. (2014) Silver and gold nanoparticles for sensor and antibacterial applications. Spectrochim. Acta A Mol Biomol Spectrosc, 128, 37-45.
https://doi.org/10.1016/j.saa.2014.02.119
Adams, L.K., Lyon, D.Y. and Alvarez, P.J.J. (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res, 40, 3527-32.
https://doi.org/10.1016/j.watres.2006.08.004
Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M.F. and Fiévet, F. (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett, 6, 866-870.
https://doi.org/10.1021/nl052326h
Nguyen,T., Huynh,T., Dang,C-H, Mai, D-T, Nguyen, T., Nguyen, D-T et al (2020) Novel biogenic silver nanoparticles used for antibacterial effect and catalytic degradation of contaminants. Res Chem Intermed, 46, 1975-1990.
https://doi.org/10.1007/s11164-019-04075-w
Zhao, X., Lv, L., Pan, B., Zhang, W., Zhang, S. and Zhang, Q. (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J, 170, 381-394.
https://doi.org/10.1016/j.cej.2011.02.071
Roldán, M. V, de Oña, P., Castro, Y., Durán, A., Faccendini, P., Lagier, C. et al (2014) Photocatalytic and biocidal activities of novel coating systems of mesoporous and dense TiO2-anatase containing silver nanoparticles. Mater Sci Eng C Mater Biol Appl, 43, 630-640.
https://doi.org/10.1016/j.msec.2014.07.053
Dachs, J., Lohmann, R., Ockenden, W.A., Méjanelle, L., Eisenreich, S.J. and Jones, K.C. (2002) Oceanic biogeochemical controls on global dynamics of persistent organic pollutants. Environ Sci Technol 36, 4229-4237.
https://doi.org/10.1021/es025724k
Torres, M.A., Barros, M.P., Campos, S.C.G., Pinto, E., Rajamani, S., Sayre et al (2008) Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol Environ Saf, 71, 1-15.
https://doi.org/10.1016/j.ecoenv.2008.05.009
Vernouillet, G., Eullaffroy, P., Lajeunesse, A., Blaise, C., Gagné, F. and Juneau, P. (2010) Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere, 80, 1062-1068.
https://doi.org/10.1016/j.chemosphere.2010.05.010
Correa-Reyes, G., Viana, M.T., Marquez-Rocha, F.J., Licea, A.F., Ponce, E. and Vazquez-Duhalt, R. (2007) Nonylphenol algal bioaccumulation and its effect through the trophic chain. Chemosphere, 68, 662-670.
https://doi.org/10.1016/j.chemosphere.2007.02.030
Eichhorn, P., Rodrigues, S. V, Baumann, W. and Knepper, T.P. (2002) Incomplete degradation of linear alkylbenzene sulfonate surfactants in Brazilian surface waters and pursuit of their polar metabolites in drinking waters. Sci Total Environ, 284, 123-134.
https://doi.org/10.1016/S0048-9697(01)00873-7
Watkinson, A.J., Murby, E.J., Kolpin, D.W. and Costanzo, S.D. (2009) The occurrence of antibiotics in an urban watershed: from wastewater to drinking water. Sci Total Environ, 407, 2711-2723.
https://doi.org/10.1016/j.scitotenv.2008.11.059
Gibs, J., Stackelberg, P.E., Furlong, E.T., Meyer, M., Zaugg, S.D. and Lippincott, R.L. (2007) Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Sci Total Environ, 373, 240-249.
https://doi.org/10.1016/j.scitotenv.2006.11.003
Huerta-Fontela, M., Galceran, M.T. and Ventura, F. (2011) Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res, 45, 1432-1442.
https://doi.org/10.1016/j.watres.2010.10.036
Gee, R.H., Rockett, L.S. and Rumsby, P.C. (2015) Considerations of endocrine disrupters in drinking water. In. Endocrine disruption and human health, Eds Philippa D. Darbre, Elsevier, London pp: 319-341
https://doi.org/10.1016/B978-0-12-801139-3.00018-1
Weber, R., Gaus, C., Tysklind, M., Johnston, P., Forter, M., Hollert, H. et al (2008) Dioxin- and POP-contaminated sites-contemporary and future relevance and challenges. Environ Sci Pollut Res, 15, 363-393.
https://doi.org/10.1065/espr2008.01.473
https://doi.org/10.1007/s11356-008-0024-1
https://doi.org/10.1065/espr2008.01.473.1
Zhao, L., Hou, H., Zhu, T., Li, F., Terada, A. and Hosomi, M. (2015) Successive self-propagating sintering process using carbonaceous materials: a novel low-cost remediation approach for dioxin-contaminated solids. J Hazard Mater, 299, 231-240.
https://doi.org/10.1016/j.jhazmat.2015.06.001
SchrÖder, H.F. (1996) Chapter 6. Separation, identification and quantification of surfactants and their metabolites in waste water, surface water and drinking water by LC-TSP-MS, FIA-TSP-MS and MS-MS. J Chromatogr Libr, 59, 263-324.
https://doi.org/10.1016/S0301-4770(08)60783-6
Abd El-Gawad, H.S. (2014) Aquatic environmental monitoring and removal efficiency of detergents. Water Sci 28, 51-64.
https://doi.org/10.1016/j.wsj.2014.09.001
Malaguerra, F., Albrechtsen, H.-J. and Binning, P.J. (2013) Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques. J Hydrol 476, 321-331.
https://doi.org/10.1016/j.jhydrol.2012.11.010
Pradeep, T. and Anshup, (2009) Nanotechnology applications for clean water, Nanotechnology Applications for Clean Water. Elsevier. doi:10.1016/B978-0-8155-1578-4.50024-X
https://doi.org/10.1016/B978-0-8155-1578-4.50024-X
Szabo, J. and Minamyer, S. (2014) Decontamination of chemical agents from drinking water infrastructure: a literature review and summary. Environ Int, 72, 119-123.
https://doi.org/10.1016/j.envint.2014.01.031
https://doi.org/10.1016/j.envint.2014.01.025
https://doi.org/10.1016/j.envint.2014.01.020
Broséus, R., Vincent, S., Aboulfadl, K., Daneshvar, A., Sauvé, S., Barbeau, B.et al (2009) Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Res, 43, 4707-4717.
https://doi.org/10.1016/j.watres.2009.07.031
Caus, A., Vanderhaegen, S., Braeken, L. and Van der Bruggen, B. (2009) Integrated nanofiltration cascades with low salt rejection for complete removal of pesticides in drinking water production. Desalination, 241, 111-117.
https://doi.org/10.1016/j.desal.2008.01.061
López-Roldán, R., Rubalcaba, A., Martin-Alonso, J., González, S., Martí, V. and Cortina, J.L. (2015) Assessment of the water chemical quality improvement based on human health risk indexes: Application to a drinking water treatment plant incorporating membrane technologies. Sci Total Environ, 540,334-343.
https://doi.org/10.1016/j.scitotenv.2015.04.045
Richardson, S. and Postigo, C. (2012) Drinking water disinfection by-products, in: Barceló, D. (Ed.), Emerging organic contaminants and human health SE - 125, The handbook of environmental chemistry. Springer Berlin Heidelberg, pp. 93-137.
https://doi.org/10.1007/698_2011_125
Hamidin, N., Yu, Q.J. and Connell, D.W. (2008) Human health risk assessment of chlorinated disinfection by-products in drinking water using a probabilistic approach. Water Res, 42, 3263-3274.
https://doi.org/10.1016/j.watres.2008.02.029
Richardson, S.D., Fasano, F., Ellington, J.J., Crumley, F.G., Buettner, K.M., Evans, J.J. et al (2008) Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environ Sci Technol, 42, 8330-8338.
https://doi.org/10.1021/es801169k
Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. et al (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci, 368, 540-546.
https://doi.org/10.1016/j.jcis.2011.11.015
Mohammad, A.W., Teow, Y.H., Ang, W.L., Chung, Y.T., Oatley-Radcliffe, D.L. and Hilal, N. (2014) Nanofiltration membranes review: recent advances and future prospects. Desalination, 356, 226-254.
https://doi.org/10.1016/j.desal.2014.10.043
Janegitz, B.C., dos Santos, F.A., Faria, R.C. and Zucolotto, V. (2014) Electrochemical determination of estradiol using a thin film containing reduced graphene oxide and dihexadecylphosphate. Mater Sci Eng C Mater Biol Appl 37, 14-19.
https://doi.org/10.1016/j.msec.2013.12.026
Wen, Y., Niu, Z., Ma, Y., Ma, J. and Chen, L. (2014) Graphene oxide-based microspheres for the dispersive solid-phase extraction of non-steroidal estrogens from water samples. J Chromatogr A, 1368, 18-25.
https://doi.org/10.1016/j.chroma.2014.09.049
Padhye, L.P., Yao, H., Kung'u, F.T. and Huang, C.-H. (2014) Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Res, 51, 266-276.
https://doi.org/10.1016/j.watres.2013.10.070
Jiang, X., Jiang, Y., Shi, G. and Zhou, T. (2014). Graphene oxide coated capillary for the analysis of endocrine-disrupting chemicals by open-tubular capillary electrochromatography with amperometric detection. J Sep Sci, 37, 1671-1678.
https://doi.org/10.1002/jssc.201301126
Xue, F., Gao, Z.-Y., Sun, X.-M., Yang, Z.-S., Yi, L.-F. and Chen, W. (2015) Electrochemical determination of environmental hormone nonylphenol based on composite film modified gold electrode. J Electrochem Soc, 162, H338-H344.
https://doi.org/10.1149/2.0271506jes
Zeumer, R., Hermsen, L., Kaegi, R., Kühr, S., Knop, B. and Schlechtriem, C.(2020) Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss. Sci Tot Env, 706, 135695.
https://doi.org/10.1016/j.scitotenv.2019.135695
Nowack, B. and Bucheli, T.D. (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut, 150(1),5-22.
https://doi.org/10.1016/j.envpol.2007.06.006
Marimuthu,S., Antonisamy, A., Malayandi, S., Rajendran, K., Tsai, P-C, Pugazhendhi, A. et al (2020) Silver nanoparticles in dye effluent treatment: a review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. J Photochem Photobio B: Bio, 205, 111823.
https://doi.org/10.1016/j.jphotobiol.2020.111823
Loosli,F., Wang, J., Rothenberg, S., Bizimis,M., Winkler,C., Borovinskaya, O., Flamignie, L. and Baalousha, M. (2019) Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Env Sci: Nano, 6, 763-777
https://doi.org/10.1039/C8EN01376D
Benn, T.M. and Westerhoff, P. (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol, 42, 4133-4139.
https://doi.org/10.1021/es7032718
https://doi.org/10.1021/es801501j
Kaegi, R., Ulrich, A., Sinnet, B., Vonbank, R., Wichser, A., Zuleeg, S. et al (2008) Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut 156: 233-239.
https://doi.org/10.1016/j.envpol.2008.08.004
Mueller, N.C. and Nowack, B. (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol, 42, 4447-4453.
https://doi.org/10.1021/es7029637
Kiser, M.A., Ryu, H., Jang, H., Hristovski, K. and Westerhoff, P. (2010) Biosorption of nanoparticles to heterotrophic wastewater biomass. Water Res, 44, 4105-4114.
https://doi.org/10.1016/j.watres.2010.05.036
Holsapple, M.P., Farland, W.H., Landry, T.D., Monteiro-Riviere, N.A., Carter, J.M., Walker, N.J. et al (2005) Research strategies for safety evaluation of nanomaterials, part II: toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicol Sci, 88, 12-17.
https://doi.org/10.1093/toxsci/kfi293
Powers, K.W., Brown, S.C., Krishna, V.B., Wasdo, S.C., Moudgil, B.M. and Roberts, S.M. (2006) Research strategies for safety evaluation of nanomaterials. part VI. Characterization of nanoscale particles for toxicological evaluation. Toxicol Sci, 90, 296-303.
https://doi.org/10.1093/toxsci/kfj099
Lowry, G. V, Hotze, E.M., Bernhardt, E.S., Dionysiou, D.D., Pedersen, J.A., Wiesner, M.R. et al (2010) Environmental occurrences, behavior, fate, and ecological effects of nanomaterials: an introduction to the special series. J Environ Qual, 39, 1867-1874.
https://doi.org/10.2134/jeq2010.0297
Mackevica, A., Skjolding, L.M., Gergs, A., Palmqvist, A. and Baun, A. (2015) Chronic toxicity of silver nanoparticles to Daphnia magna under different feeding conditions. Aquat Toxicol, 161, 10-16.
https://doi.org/10.1016/j.aquatox.2015.01.023
Starnes, D.L., Unrine, J.M., Starnes, C.P., Collin, B.E., Oostveen, E.K., Ma, R. et al (2015) Impact of sulfidation on the bioavailability and toxicity of silver nanoparticles to Caenorhabditis elegans. Environ Pollut, 196:239-246.
https://doi.org/10.1016/j.envpol.2014.10.009
Książyk, M., Asztemborska, M., Stęborowski, R. and Bystrzejewska-Piotrowska, G. (2015) Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull Environ Contam Toxicol, 94, 554-558.
https://doi.org/10.1007/s00128-015-1505-9
Dominguez, G.A., Lohse, S.E., Torelli, M.D., Murphy, C.J., Hamers, R.J., Orr, G. et al (2015) Effects of charge and surface ligand properties of nanoparticles on oxidative stress and gene expression within the gut of Daphnia magna. Aquat Toxicol, 162, 1-9.
https://doi.org/10.1016/j.aquatox.2015.02.015
Antonietti, M. (2001) Surfactants for novel templating applications. Curr Opin Colloid Interface Sci, 6(3), 244-248.
https://doi.org/10.1016/S1359-0294(01)00089-9
Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S., 2007. Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol, 41, 8484-8490.
https://doi.org/10.1021/es071445r
John, V.T., Simmons, B., McPherson, G.L. and Bose, A. (2002) Recent developments in materials synthesis in surfactant systems. Curr Opin Col Interf Sci, 7(5-6), 288-295.
https://doi.org/10.1016/S1359-0294(02)00070-5
Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., Tan, W. (2001) Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir, 17, 2900-2906.
https://doi.org/10.1021/la0008636
Mauter, M.S. and Elimelech, M. (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol, 42, 5843-5859.
https://doi.org/10.1021/es8006904
Yang, K. and Xing,B. (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chem Rev, 110, 5989-6008.
https://doi.org/10.1021/cr100059s
Karn, B., Kuiken, T. and Otto, M. (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect, 117,1823-1831
https://doi.org/10.1289/ehp.0900793
Handy, R.D., Von Der Kammer, F., Lead, J.R., Hassellöv, M., Owen, R. and Crane, M. (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology, 17(4), 287-314
https://doi.org/10.1007/s10646-008-0199-8
Glassman, H.N. (1948) Surface active agents and their application in bacteriology. Bacteriol Rev, 12, 105-148.
https://doi.org/10.1128/MMBR.12.2.105-148.1948
Jiang, J., Oberdörster, G. and Biswas, P. (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanoparticle Res 11, 77-89.
https://doi.org/10.1007/s11051-008-9446-4
Wang, D., Lin, Z., Yao, Z. and Yu, H. (2014) Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles. Chemosphere, 108, 70-75.
https://doi.org/10.1016/j.chemosphere.2014.03.010
Sayes, C.M., Liang, F., Hudson, J.L., Mendez, J., Guo, W., Beach, J.M. et al (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett, 161, 135-142.
https://doi.org/10.1016/j.toxlet.2005.08.011
Wallace, W., Keane, M., Murray, D., Chisholm, W., Maynard, A. and Ong, T. (2007) Phospholipid lung surfactant and nanoparticle surface toxicity: Lessons from diesel soots and silicate dusts, in: Maynard, A., Pui, D.H. (Eds.), Nanotechnology and Occupational Health SE - 4. Springer Netherlands, pp. 23-38.
https://doi.org/10.1007/978-1-4020-5859-2_4
Zhang, L.W., Zeng, L., Barron, A.R. and Monteiro-Riviere, N.A. (2007) Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol, 26, 103-113.
https://doi.org/10.1080/10915810701225133
Lovern, S.B. and Klaper, R. (2006) Daphnia magna mortality when exposed to titanium dioxide and fullerene (C60) nanoparticles. Environ Toxicol Chem, 25, 1132-1137.
https://doi.org/10.1897/05-278R.1
Baalousha, M. (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ, 407, 2093-2101.
https://doi.org/10.1016/j.scitotenv.2008.11.022
Ouyang, K., Walker, S., Yu, X-Y , Gao, C-H , Huang, Q and Cai, P. (2018) Metabolism, survival, and gene expression of pseudomonas putida to hematite nanoparticles mediated by surface-bound humic acid. Env Sci Nano, 5, 682-695.
https://doi.org/10.1039/C7EN01039G
Gao, J., Powers, K., Wang, Y., Zhou, H., Roberts, S.M., Moudgil, B.M. et al (2012) Influence of Suwannee River humic acid on particle properties and toxicity of silver nanoparticles. Chemosphere 89, 96-101.
https://doi.org/10.1016/j.chemosphere.2012.04.024
Li, M., Pokhrel, S., Jin, X., Mädler, L., Damoiseaux, R. and Hoek, E.M.V. (2011) Stability, bioavailability, and bacterial toxicity of Zno and iron-doped Zno nanoparticles in aquatic media. Environ Sci Technol, 45, 755-761.
https://doi.org/10.1021/es102266g
Yang, S.P., Bar-Ilan, O., Peterson, R.E., Heideman, W., Hamers, R.J. and Pedersen, J.A. (2013) Influence of humic acid on titanium dioxide nanoparticle toxicity to developing Zebrafish. Environ Sci Technol, 47, 4718-4725.
https://doi.org/10.1021/es3047334
Wang, Z., Quik, J.T.K., Song, L., Van Den Brandhof, E.-J., Wouterse, M. and Peijnenburg, W.J.G.M. (2015). Humic substances alleviate the aquatic toxicity of polyvinylpyrrolidone-coated silver nanoparticles to organisms of different trophic levels. Environ Toxicol Chem, 34, 1239-1245.
https://doi.org/10.1002/etc.2936
Huang, Y.Q., Wong, C.K.C., Zheng, J.S., Bouwman, H., Barra, R., Wahlström, B. et al (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42, 91-99.
https://doi.org/10.1016/j.envint.2011.04.010
Alexander, H.C., Dill, D.C., Smith, L.W., Guiney, P.D. and Dorn, P. (1988) Bisphenol a: Acute aquatic toxicity. Environ Toxicol Chem 7, 19-26.
https://doi.org/10.1002/etc.5620070104
Shi, Y., Zhang, J.H., Jiang, M., Zhu, L.H., Tan, H.Q. and Lu, B. (2010) Synergistic genotoxicity caused by low concentration of titanium dioxide nanoparticles and p,p,-DDT in human hepatocytes. Environ Mol Mutagen, 51, 192-204.
https://doi.org/10.1002/em.20527
Cohn, B.A., Wolff, M.S., Cirillo, P.M. and Sholtz, R.I. (2007) DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect 115, 1406-1414.
https://doi.org/10.1289/ehp.10260
Rogan, W.J. and Chen, A. (2005) Health risks and benefits of bis(4-chlorophenyl)-1,1,1-trichloroethane (DDT). Lancet, 366(9487),763-773.
https://doi.org/10.1016/S0140-6736(05)67182-6
Rogan, W.J. and Ragan, N.B. (2003) Evidence of effects of environmental chemicals on the endocrine system in children. Pediatrics, 112, 247-252.
Zhao, J. and Castranova, V. (2011) Toxicology of nanomaterials used in nanomedicine. J Toxicol Environ Heal Part B, 14(8),593-632.
https://doi.org/10.1080/10937404.2011.615113
O'Mullane, D.M., Kavanagh, D., Ellwood, R.P., Chesters, R.K., Schafer, F., Huntington, E. et al (1997) A three-year clinical trial of a combination of trimetaphosphate and sodium fluoride in silica toothpastes. J Dental Res, 76(11),1776-1778.
https://doi.org/10.1177/00220345970760110901
Xie, C., Liang, G., PuYue, P. and Bing, Y. (2009) Combined effects of sodium fluoride and nano-TiO2 on human bronchial epithelial cells. J Environ Occup Med, 26, 242-244.
Hartmann, N.B., Legros, S., Von der Kammer, F., Hofmann, T. and Baun, A. (2012) The potential of TiO2 nanoparticles as carriers for cadmium uptake in Lumbriculus variegatus and Daphnia magna. Aquat Toxicol, 118-119, 1-8.
https://doi.org/10.1016/j.aquatox.2012.03.008
Mitra, S., Keswani, T., Dey, M., Bhattacharya, S., Sarkar, S., Goswami, S. et al (2012). Copper-induced immunotoxicity involves cell cycle arrest and cell death in the spleen and thymus. Toxicology, 293, 78-88.
https://doi.org/10.1016/j.tox.2011.12.013
Fan, W., Cui, M., Liu, H., Wang, C., Shi, Z., Tan, C. et al (2011) Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environ Pollut, 159, 729-734.
https://doi.org/10.1016/j.envpol.2010.11.030
Du, H., Zhu, X., Fan, C., Xu, S., Wang, Y. and Zhou, Y. (2011) Oxidative damage and OGG1 expression induced by a combined effect of titanium dioxide nanoparticles and lead acetate in human hepatocytes. Environ Toxicol, 1-8.
https://doi.org/10.1002/tox.20682
States, J.C., Barchowsky, A., Cartwright, I.L., Reichard, J.F., Futscher, B.W. and Lantz, R.C. (2011) Arsenic toxicology: translating between experimental models and human pathology. Environ Health Perspect, 119(10),1356-1363.
https://doi.org/10.1289/ehp.1103441
Guan, X., Du, J., Meng, X., Sun, Y., Sun, B. and Hu, Q. (2012) Corrigendum to "application of titanium dioxide in arsenic removal from water: a review" [J. Hazard. Mater. 215-216 (2012) 1-16]. J Hazard Mat, 221-222:303
https://doi.org/10.1016/j.jhazmat.2012.02.069
Wang, D., Hu, J., Irons, D.R. and Wang, J. (2011) Synergistic toxic effect of nano-TiO2 and As(V) on Ceriodaphnia dubia. Sci Total Environ, 409, 1351-1356.
https://doi.org/10.1016/j.scitotenv.2010.12.024
Hu, X., Chen, Q., Jiang, L., Yu, Z., Jiang, D. and Yin, D. (2011) Combined effects of titanium dioxide and humic acid on the bioaccumulation of cadmium in Zebrafish. Environ Pollut, 159, 1151-1158.
https://doi.org/10.1016/j.envpol.2011.02.011
Yang, W.-W., Miao, A.-J. and Yang, L.-Y. (2012) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One, 7(3):e32300.
https://doi.org/10.1371/journal.pone.0032300
Gardea-Torresdey, J.L., Parsons, J.G., Gomez, E., Peralta-Videa, J., Troiani, H.E., Santiago, P. et al (2002) Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett, 2, 397-401.