revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Archivos suplementarios

PDF. Pag, 63-76

Palabras clave

Arbuscular Mycorrhizal Fungi(AM Fungi or AMF)
Agriculture
Global warming Hongos micorrízicos arbusculares (HMA)
Agricultura
Calentamiento global

Cómo citar

Tiwari, V. ., Shashtri, T. ., Pereira Kolla, A. ., Bajpai, R. ., Sinha, K. ., & Kolla, V. . (2020). Arbuscular mycorrhizae fungi a potential eco-friendly tool for sustainable agriculture under changing climatic conditions/ in biotic and abiotic stress conditions . REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(32), 63–76. https://doi.org/10.47499/revistaaccb.v1i32.206

Resumen

Los hongos micorrízicos arbusculares (HMA) son biotrofos obligados que viven en asociación simbiótica con las raíces de las plantas. Se encuentran entre los microorganismos del suelo más extendidos que proporcionan a la planta huésped nutrientes y protección contra patógenos. Las prácticas agrícolas modernas, como la labranza frecuente, el alto empleo de fertilización inorgánica pesticidas junto con condiciones climáticas cambiantes debido al calentamiento global, tienen enormes impactos en la colonización de los HMA, la interacción con las plantas y la productividad de los cultivos. Los HMA afectan positivamente la tolerancia de las plantas al estrés biótico y abiótico, a los ecosistemas severos y sus patógenos al alterar la estructura de las raíces, la exudación, la microflora de la rizosfera, la producción de antifúngicos y antibacterianos, y al competir con los patógenos por la absorción de nutrientes. Por lo tanto, juegan un papel importante en el crecimiento, la productividad y la calidad de las plantas. Además, el efecto de un fungicida varía según su modo de acción y las especies de HMA asociadas, lo que sugiere que estos hongos tienen un gran potencial como herramienta para la agricultura sostenible ecológica en el actual escenario de calentamiento global.

https://doi.org/10.47499/revistaaccb.v1i32.206

Citas

Kaur, A., Singh, A., Kang, S.J. (2014). Influence of different types mycorrhizal on crop productivity. Curr Agri Res Jour,2, 51-54.

https://doi.org/10.12944/CARJ.2.1.07

Lovelock, C.E., Wright, S.F., Clark, D.A., Ruess, R.W. (2004). Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. J Ecol, 92, 278-287.

https://doi.org/10.1111/j.0022-0477.2004.00855.x

Schindler, F.V., Mercer, E.R., Rice, J.A. (2007). Chemical characteristics of glomalin-related soil protein (GRSP) extracted from soils of varying organic matter content. Soil Biol Biochem, 39, 320-329.

https://doi.org/10.1016/j.soilbio.2006.08.017

Singh, P.K., Singh, M., Tripathi, B.N. (2013). Glomalin: An arbuscular mycorrhizal fungal soil protein. Protoplasma. 250, 663-669.

https://doi.org/10.1007/s00709-012-0453-z

Sharma, S., Prasad, R., Varma, A., Sharma, A. K. (2017). Glycoprotein associated with Funneliformiscoronatum, Gigaspora margarita and Acaulosporascrobiculata suppress the plant pathogens in vitro. Asian J Plant Pathol, 11, 192-202.

https://doi.org/10.3923/ajppaj.2017.199.202

Chanda, D., Sharma, G.D., Jha, D.K. (2014). The potential use of Arbuscular Mycorrhiza in the cultivation of medicinal plants in Barak Valley, Assam. A Review. Curr World Environ, 9, 544-551.

https://doi.org/10.12944/CWE.9.2.40

Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S., Sa, T. (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Front Plant Sci, 10, 457.

https://doi.org/10.3389/fpls.2019.00457

Bagyaraj, D.J. (2014) Mycorrhizal Fungi. Proc Indian Natn Sci Acad. 80, 415-428.

https://doi.org/10.16943/ptinsa/2014/v80i2/55118

Smith, S.E. and Read, D. (2008). Mycorrhizal symbiosis. Elsevier Academic Press., pp 815.

Mosse, B. (1981). Vesicular Arbuscular Mycorrhizal Research for Tropical Agriculture, Honolulu University of Hawaii Press, Hawaii, USA .

Gupta, R.P., Kalia, A., Kapoor, S. (2007). Bioinoculants: A Step towards Sustainable Agriculture, New India Publishing Agency, New Delhi.

Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R., Jackson, L. E. (2016). Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ, 566, 1223-1234.

https://doi.org/10.1016/j.scitotenv.2016.05.178

Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M. (2015). Arbuscular mycorrhizal fungi act as bio-stimulants in horticultural crops. Sci Hort, 196, 91-108.

https://doi.org/10.1016/j.scienta.2015.09.002

Sieverding, E. (1991). Vesicular-arbuscular mycorrhiza management in tropical agrosystems. Deutche Gesellschaft Fur TechnischeZusammenarbeit, GTZ No. 224; federal republic of Germany. pp 371.

Hodge, A., Campbell, C.D., Fitter, A.H. (2001). An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature, 413, 297-299.

https://doi.org/10.1038/35095041

Porcel, R., Aroca, R., Ruiz-Lozano, J.M. (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. A review.Agron Sustain Dev, 32, 181-200.

https://doi.org/10.1007/s13593-011-0029-x

Mohammadi, K., Khalesro, S., Sohrabi, Y., Heidari, G. (2011). Beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci, 1, 310-319.

Wang, F., Sun, Y., Shi, Z. (2019). Arbuscular Mycorrhiza enhances biomass production and salt tolerance of Sweet Sorghum. Microorganisms, 7, 289.

https://doi.org/10.3390/microorganisms7090289

Kayama, M., and Yamanaka, T. (2014). Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsiscuspidata planted on acidic soil. Trees, 28, 569-583.

https://doi.org/10.1007/s00468-013-0973-y

Pellegrino, E. and Bedini, S. (2014). Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol Biochem, 68, 429-439.

https://doi.org/10.1016/j.soilbio.2013.09.030

Gamalero, E., Pivato, B., Bona, E., Copetta, A., Avidano, L., Lingua, G., et al (2010). Interactions between a fluorescent pseudomonad, an arbuscular mycorrhizal fungus and a hypovirulent isolate of Rhizoctonia solani affect plant growth and root architecture of tomato plants. Plant Biosyst Int J Deal Asp Plant Biol, 144, 582-591.

https://doi.org/10.1080/11263504.2010.489315

Vos, C. M., Yang, Y., De Coninck, B., Cammue, B. P. A. (2014). Fungal (-like) biocontrol organisms in tomato disease control. Biol Control, 74, 65-81.

https://doi.org/10.1016/j.biocontrol.2014.04.004

Vierheilig, H., Steinkellner, S., Khaosaad, T. (2008). "The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one Mechanism, Two Effects?" in Mycorrhiza, ed. A. Varma (Berlin: Springer-Verlag), 307-320.

https://doi.org/10.1007/978-3-540-78826-3_15

Elsen, A., Gervacio, D., Swennen, R., De Waele, D. (2008). AMF-induced biocontrol against plant-parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza, 18, 251-256.

https://doi.org/10.1007/s00572-008-0173-6

Jones, D. L., Hodge, A.,Kuzyakov, Y. (2004). Plant and mycorrhizal regulation of rhizodeposition. New Phytol, 163, 459-480.

https://doi.org/10.1111/j.1469-8137.2004.01130.x

Lioussanne,L., Beauregard, M.S., Hamel, C., Jolicoeur, M., St-Arnaud, M. (2009). Interactions between arbuscular mycorrhiza and soil microorganisms. In: Khasa D, Piche Y, Coughlan A (eds) Advances in Mycorrhizal Science and Technology, NRC Research Press, Ottawa.

Bagyaraj, D.J. (2006). Current status of biological control of plant diseases using antagonistic organisms in India. PDBC Pub Bangalore, 125-134.

St-Arnaud, M., Hamel, C., Caron, M., Fortin, J.A. (1994). Inhibition of Phythiumultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can J Plant Pathol, 16, 187-194.

https://doi.org/10.1080/07060669409500751

Marschner, P. and Baumann, K. (2003). Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil, 251, 279-289.

https://doi.org/10.1023/A:1023034825871

Soderberg, K.H., Olsson, P.A., Baath, E. (2002). Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol, 40, 223-231.

https://doi.org/10.1111/j.1574-6941.2002.tb00955.x

https://doi.org/10.1016/S0168-6496(02)00233-7

Bauer, J.T., Koziol, L., Bever J.D. (2020). Local adaptation of mycorrhizae communities changes plant community composition and increases aboveground productivity. Oecologia,192, 735-744.

https://doi.org/10.1007/s00442-020-04598-9

Xavier, I.J. and Boyetchko, S.M. (2002). Arbuscular Mycorrhizal fungi as biostimulants and bioprotectants of crops. Applied Microbio lBiotechnol, 2, 311-340.

https://doi.org/10.1016/S1874-5334(02)80015-6

Begum, N., Qin, C., Ahanger, M.A., Raza, S., Khan, M.I., Ashraf, M.,et al (2019). Role of arbuscular mycorrhizal Fungi in plant growth regulation: Implications in abiotic stress tolerance. Front Plant Sci, 10, 1068.

https://doi.org/10.3389/fpls.2019.01068

Grosch, R., Lottmann, J., Faltin, F., Berg, G. (2005). Use of bacterial antagonists to control diseases caused by Rhizoctonia solani. GesundePflanze, 57, 199-205.

https://doi.org/10.1007/s10343-005-0096-5

Berg, G., Grosch, R., Scherwinski, K. (2007). Risk assessment for microbial antagonists: Are there effects on non-target organisms. GesundePflanzen, 59, 107-117.

https://doi.org/10.1007/s10343-007-0155-1

Linderman, R.G. (1994). Role of VAM fungi in Biocontrol. In: Mycorrhizae and Plant health, Pfleger, F.L., Linderman R.G. (Eds). The American Phytopathological Society, St. Paul, MN., USA., ISBN: 0-89054-158-2. 1-27.

Pinochet, J., Calvet, C., Camprubi, A., Fernandez, C. (1996). Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in Perennial crops: a review. Plant Soil, 185, 183-190.

https://doi.org/10.1007/BF02257523

Cordier, C., Gianinazzi, S., Gianinazzi-Pearson, V. (1996). Colonisation patterns of root tissues by Phytophthora nicotianae var. Parasitica related to reduce disease in mycorrhizal tomato. Plant Soil, 185, 223-233 (1996).

https://doi.org/10.1007/BF02257527

Hooker, J.E., Jaizme-Vega, M., Atkinson, D. (1994). Biocontrol of Plant pathogens using arbuscular mycorrhizal fungi. Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural ecosystems, Birkhauser, Basel pp191-200.

https://doi.org/10.1007/978-3-0348-8504-1_15

Giasson, P., Karam A., Jaouich, A. (2008). AM and allevation of soil stresses on plant growth. In: Siddhiqui ZA, Akhtar MS, Futai K., editors, Mycorrhizae: Sustanable Agriculture and Forestry. Dordrecht, the Netherlands: Springer, pp 99-134.

https://doi.org/10.1007/978-1-4020-8770-7_4

Yang, Y., Song, Y., Scheller, H.V., Gosh, A., Ban, Y., Chen, H. et al (2015). Community structure of arbuscular mycorrhizal fungi associated with Robiniapseudoacacia in uncontaminated and heavy metal contaminated soils. Soil Biol Biochem, 86, 146-158.

https://doi.org/10.1016/j.soilbio.2015.03.018

Yang, Y., Liang, Y., Han, X., Chiu, T.Y., Gosh, A., Chen, H. et al (2016). The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep, 6, 1-14.

https://doi.org/10.1038/srep20469

Ahiabor, B.D. and Hirata, H. (1995). Influence of growth stage on the association between some tropical legumes and two variants species of Glomus in an Andosol. Soil Sci Plant Nutr, 41, 481-486.

https://doi.org/10.1080/00380768.1995.10419610

Marschner, H. (1995). Mineral nutrition of higher plants (2ndEdn). Academic Press, London. 889.

Chaudhry, T.M., Hayes, W.J., Khan, A.G., Khoo, C.S. (1998). Phytoremidiation- fousing on accumulator plants that remediate metal ontaminated soils. Aust J Ecotoxicol, 4, 37-51.

Shetty, K.G., Banks, M.K., Hetrick, B.A., Schwab, A.P. (1995). Effects of myorrhizae and fertilizer amendments on zinc tolerance of plants. Environ Poll, 88, 307-314.

https://doi.org/10.1016/0269-7491(95)93444-5

Bhattacharjya, S., Bhaduri, D., Sahu, A. (2018). Arbuscualr Mycorrhizal Fungi: A potential tool for enhancing crop productivity in salt affected soil. Inter J Agric Environ Biotechnol, 11, 871-880.

https://doi.org/10.30954/0974-1712.12.2018.8

Saia, S., Aissa, E., Luziatelli, F., Ruzzi, M., Colla, G., Ficca, A.G. et al (2019). Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza,30, 133-147.

https://doi.org/10.1007/s00572-019-00927-w

Chiariello, N., Hickman, C., Mooney, M.A. (1982). Endomycorrhizal role for interspecific transfer of phosphorous in a community of annual plants. Science. 217, 941-943.

https://doi.org/10.1126/science.217.4563.941

Tian, C.Y., Feng, G., Li, X.L., Zhang, F.S. (2004). Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Applied Soil Ecol,26, 143-148.

https://doi.org/10.1016/j.apsoil.2003.10.010

Sharifi, M., Ghorbanli, M., Ebrahimzadeh, H. (2007). Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol, 164, 1144-1151.

https://doi.org/10.1016/j.jplph.2006.06.016

Al-Khaliel, A.S. (2010). Effect of salinity stress on mycorrhizal association and growth response of peanut infected by Glomus mosseae. Plant Soil Environ,56 , 318-324.

https://doi.org/10.17221/204/2009-PSE

Garg, N. and Manchanda, G. (2008). Effect of arbuscular mycorrhizal inoculation of salt-induced nodule senescence in Cajanus cajan (pigeonpea). J Plant Growth Regul, 27, 115-124.

https://doi.org/10.1007/s00344-007-9038-z

Giri, B. and Mukerji, K.G. (2004). Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field conditions: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza,. 14, 307-312.

https://doi.org/10.1007/s00572-003-0274-1

Mitra, D., Navendra, U., Panneerselvam, U., Ansuman, S., Ganeshamurthy, A. N., Divya, J. (2019). Role of mycorrhiza and its associated bacteria on plant growth promotion and nutrient management in sustainable agriculture. Int J Life Sci Appl Sci, 1, 1-10.

Liu, C., Ravnskov, S., Liu, F., Rubæk, G. H., Andersen, M. N. (2018). Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci, 156, 46-58.

https://doi.org/10.1017/S0021859618000023

Gutjahr, C. and Paszkowski, U. (2013). Multiple control level of root system remodelling in arbuscular mycorrhizal symbiosis. Front Plant Sci, 4, 204.

https://doi.org/10.3389/fpls.2013.00204

Atkinson, D., Berta, G., Hooker, J.E. (1994). Impact of mycorrhizal colonization on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schuepp H, eds. Sustainable agriculture and natural ecosystems. Basel, Switzerland: Birkauser Verlag. 89-99.

https://doi.org/10.1007/978-3-0348-8504-1_8

Elsen, A., Baimey, H., Swennen, R., Waele, D.De. (2003). Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp) differing in nematode susceptibility. Plant Soil, 256, 303-313.

https://doi.org/10.1023/A:1026150917522

Ingraffia, R., Amato, G., Frenda, A.S., Giambalvo, D. (2019). Impacts of arbuscular mycorrhizal fungi on nutrient uptake, N2 fixation, N transfer, and growth in a wheat/faba bean intercropping system. PLOS ONE, 14, 1-16.

https://doi.org/10.1371/journal.pone.0213672

Gibson, A.H. (1976). Limitation to dinitrogen fixation by legumes. Proc First Inter Symp. Washington State Univ Press Pullman. pp 400-428.

Suresh, C.K. and Bagyaraj, D.J. (2002). Arbuscular Mycorrhizae: Interactions in Plants, Rhizosphere and Soils. Oxford and IBH, New Delhi. 7-28.

Reverkar, K., Singh, A.B., Ganguli, T.K. (2005). Mycorrhiza: Role and Applications, Allied Publishers Pvt Ltd, New Delhi.

Azcon- Aguilar, C. and Barea, J.M. (1992). Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (eds). Mycorrhizal functioning, An Integrative Plant-Fungal process. Champan and Hall NY. 163-198.

Soumare, A., Diop, T., Manga, A., Ndoye, I. (2015). Role of arbuscular mycorrhiza fungi and nitrogen fixing bacteria on legume growth under various environmental stresses. Int J Biosci,7, 31-46.

https://doi.org/10.12692/ijb/7.4.31-46

Hindumathi, A. and Reddy, B.N. (2012). Synergistic effect of arbuscular mycorrhizal fungi and Rhizobium on the growth and charcoal rot of Soybean (Glycine max(L.) Merrill) World J Sci Technol, 2, 63-70.

Gao, X., Lu, X., Wu, M., Zhang, H., Pan, R., Tian, J. et al (2012). Co-Inoculation with Rhizobia and AMF inhibited Soybean Red crown Rot: from field study to plant Defense-Related Gene Expression Analysis. PloS ONE, 7, 1-10.

https://doi.org/10.1371/journal.pone.0033977

Bulgarelli, R.G., Marcos, F.C.C., Ribeiro, R.V., Andrade, S.A.L.D. (2017). Mycorrhizae enhance nitrogen fixation and photosynthesis in phosphorus-starved soybean (Glycine max L. Merill). Environ Exp Bot, 140, 26-33.

https://doi.org/10.1016/j.envexpbot.2017.05.015

Bagyaraj, D.J. and Menge, J.A. (1978). Interaction between a VA mycorrhiza and Azotobacter& their effects on rhizosphere microflora & plant growth. New Phytol, 80, 567-573.

https://doi.org/10.1111/j.1469-8137.1978.tb01588.x

Ho, I.and Trappe, J.M. (1979). Interaction of VA-mycorrhizal fungus and a free- living nitrogen fixing bacterium on growth of tall fescue. Abst. 4thN.Am. Conf. Mycorrhizae. Fort Collins, Colorado.

Manjunath, A., Mohan, R., Bagyaraj, D.J. (1981). Interaction between Beijerinckia mobilis, Aspergillus niger and Glomus fasciculatus and their effects on growth of onion. New Phytol. 87, 723-727.

https://doi.org/10.1111/j.1469-8137.1981.tb01707.x

Khan, M.S., Zaidi, A., Wani, P.A. (2007). Role of phosphate-solubilizing microorganisms in suatainable agriculture- A review. Agron Sustain Dev, 27, 29-43.

https://doi.org/10.1051/agro:2006011

Tilak, K.V.B.R., Pal, K.K., Dey, R. (2010). Microbes for Sustanable Agriculture. IK International Publishing House Pvt Ltd, New Delhi.

Maaloum, S. El., Elabed, A., Talibi, Z. El. A., Meddich, A., Maltouf, A. F., Douira, A., et al (2020). Effect of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria consortia associated with phospho-compost on phosphorus solubilization and growth of tomato seedlings (Solanum lycopersicum L.). Commun Soil Sci Plan, 51, 622-634.

https://doi.org/10.1080/00103624.2020.1729376

Bi, Y., Xiao, Li., Liu, R. (2019). Response of arbuscular mycorrhizal fungi and phosphorus solubilizing bacteria to remediation abandoned solid waste of coal mine. Int J Coal Sci Technol, 6, 603-610.

https://doi.org/10.1007/s40789-019-00270-7

Dar, G.H. (2010). Soil Microbiology and Biochemistry, New India Publishing Agency, New Delhi.

Singh, S. and Kapoor, K.K. (1999). Inoculation with phosphate-solubilizing microorganisms and a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat grown in a sandy soil. Biol Fertil Soils, 28, 139-144.

https://doi.org/10.1007/s003740050475

Giovannini, L., Palla, M., Agnolucci, M., Avio, L., Sbrana, C., Turrini, A. et al (2020). Arbuscular mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selection of the best performing inocula. Agronomy, 10, 106.

https://doi.org/10.3390/agronomy10010106

Abdel-Fattah, G.M. and Mohamedin, A.H. (2000). Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soils, 32, 401-409.

https://doi.org/10.1007/s003740000269

Mayo, K., Davis, R.E., Motta, J. (1986). Stimulation of germination of spores of Glomus vesiforme by spore-associated bacteria. Mycologia, 78, 426-431.

https://doi.org/10.1080/00275514.1986.12025265

https://doi.org/10.2307/3793046

Xavier, L.J.C. and Germida, J.J. (2003). Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem,35, 471-478.

https://doi.org/10.1016/S0038-0717(03)00003-8

Giovannetti, M., Avio, L., Sbrana, C. (2010). Fungal spore germination and pre-symbiotic mycelial growth-physiological and genetic aspects, in Arbuscular Mycorrhizas: Physiology and Function. pp 3-32.

https://doi.org/10.1007/978-90-481-9489-6_1

Ravnskov, S. and Jakobsen, I. (1999). Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza, 8, 329-334.

https://doi.org/10.1007/s005720050254

Battini, F., Gronlund, M., Agnolucci, M., Giovannetti, M., Jakobsen, I. (2017). Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep, 7, 4686.

https://doi.org/10.1038/s41598-017-04959-0

Turrini, A., Bedini, A., Loor, M. B., Santini, G., Sbrana, C., Giovannetti, M., et al (2018). Local diversity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop plant species. Bio lFertil Soils, 54, 203-217.

https://doi.org/10.1007/s00374-017-1254-5

O' Bannon, J.H., Inserra, R.N., Nemec, S., Vovlas, N. (1979). The influence of Glomus mosseae on Tylenchulussemipenetrans-infected and uninfected Citrus lemon seedlings. J Nematol, 11, 247-250.

Bodker, L., Kjoller, R., Rosendahl, S. (1998). Effect of phosphate and the arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza, 8, 169-174.

https://doi.org/10.1007/s005720050230

Bodker, L., Kjoller, R., Kristensen, K., Rosendahl, S. (2002). Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza, 12, 7-12.

https://doi.org/10.1007/s00572-001-0139-4

Filion, M., St-Arnaud, M., Jabaji-Hare, S.H. (2003). Quantification of Fusarium solani f. Sp phaseoli in mycorrhizal beans plants and surrounding mycorrhizosphere soil using real-time polymerase chain reaction and direct isolations on selective media. Phytopathology. 93, 229-235.

https://doi.org/10.1094/PHYTO.2003.93.2.229

Graham, J.H. (1982). Effect of citrus root exudates on germination of chlamydospores of vesicular-arbuscular mycorrhizal fungus Glomus epigaeum. Mycologia, 74, 831-835.

https://doi.org/10.1080/00275514.1982.12021592

https://doi.org/10.2307/3792871

Sharma, M.P., Gaur, A., Mukerji, K.G. (2007). Arbuscular mycorrhiza mediated plant pathogen interactions and the mechanisms involved in: Biological control of plant diseases, Sharma, M.P., Gaur A., and Mukerji K.G. (Eds.). Haworth Press, Binghamton, USA., pp 47-63.

Heinemeyer, A. and Fitter, A.H. (2004). Impact of temperature on the arbuscular mycorrhizal (AM) symbiosis: growth response of the host plant & its AM fungal partner. J Exp Bot, 55, 525-534.

https://doi.org/10.1093/jxb/erh049

Furlan, V. and Fortin, J.A. (1973). Formation of endomycorrhizae by Endogonecalospora on Allium cepa under three temperature regimes. Nat Can, 100, 467-477.

Graham, J.H., Leonard, R.T., Menge, J.A. (1982). Interaction of light and soil temperature with phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. New Phytol, 91, 683-690.

https://doi.org/10.1111/j.1469-8137.1982.tb03347.x

Fitter, A.H., Heinemeyer, A., Staddon, P.L. (2000). The impact of elevated CO2& global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol, 147, 179-187.

https://doi.org/10.1046/j.1469-8137.2000.00680.x

Auge, R.M., Toler, H.D., Saxton, A.M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: meta-analysis. Mycorrhiza, 25, 13-24.

https://doi.org/10.1007/s00572-014-0585-4

Addy, H.D., Schaffer, G. F., Miller, M. H., Peterson, R. L. (1994). Survival of the external mycelium of a VAM fungus in frozen soil over winter. Mycorrhiza, 5, 1-5.

https://doi.org/10.1007/BF00204013

Mohan, J.E., Cowden, C.C., Baas, P., Dawadi, A., Frankson, P.T., Helmick, K. et al (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol, 10, 3-19.

https://doi.org/10.1016/j.funeco.2014.01.005

Hawkes, C.V., Hartley, I.P., Ineson P., Fitter, A.H. (2008). Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Change Biol, 14, 1181-1190.

https://doi.org/10.1111/j.1365-2486.2007.01535.x

Heinemeyer, A., Ineson, P., Ostle, N., Fitter, A.H. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol, 171, 159-170.

https://doi.org/10.1111/j.1469-8137.2006.01730.x

Ahmad, A., Bashir, Z., Akram, W. (2011). Effect of sunlight on the mycorrhizal associations in rhizomatic plant Colocasia esculenta L. Mycopath, 9, 57-60.

Rodriguez, A. and Sanders, I.R. (2015). The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J, 9, 1053-1061.

https://doi.org/10.1038/ismej.2014.207

Azul, A.M., Nunes, J., Ferreira, I., Coelho, A. S., Verissiomo, P., Trovao, J. (2014).Valuing native ectomycorrhizal fungi as a Mediterranean forestry component for sustainable and innovative solutions1. Botany, 92, 161-171.

https://doi.org/10.1139/cjb-2013-0170

Poorter, H. and Navas, M.L. (2003). Plant growth and competition at elevated CO2 on winners, losers and functional groups. New Phytol, 157, 175-198.

https://doi.org/10.1046/j.1469-8137.2003.00680.x

Monz, C.A., Kunt, H.W., Reeves, F.B., Elliot, E.T. (1994). The response of mycorrhizal colonization to elevated CO2 & climate change in Pascopyrumsmithii and Boutelouagracilis. Plant Soil, 165, 75-80.

https://doi.org/10.1007/BF00009964

Tang, J., Xu, L., Chen, X., Hu, S. (2009). Interaction between C4 barnyard grass and C3 upland rice under elevated CO2: impact of mycorrhizae. Acta Oecologia, 35, 227-235.

https://doi.org/10.1016/j.actao.2008.10.005

Rilling, M.C. and Allen, M.F. (1999). What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2? Mycorrhiza, 9,1-8.

https://doi.org/10.1007/s005720050257

Sanders, I.R., Streitwolf-Engel, R., Vander Heijden, M.G.A., Boller, T., Wiemken, A. (1998). Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia, 117, 496-503.

https://doi.org/10.1007/s004420050685

Baslam, M., Antolin, M.C., Gogorcena, Y., Munoz, F., Goicoechea, N. (2014). Changes in alfalfa forage quality & stem carbohydrates induced by arbuscular mycorrhizal fungi and elevated atmospheric CO2. Ann Appl Biol, 164, 190-199.

https://doi.org/10.1111/aab.12092

Todeschini, V., Aitlahmidi, N., Mazzucco, E., Marsano, F., Gosetti, F., Robotti, E. et al (2018). Impact of beneficial microorganisms on Strawberry growth, fruit production, nutritional quality and volatilome. Front Plant Sci, 9, 1611.

https://doi.org/10.3389/fpls.2018.01611

Davies Jr., F.T., Olalde-Portugal, V., Aguilera-Gomez, L., Alvarado, M.J., Ferrera-Cerrato, R.C., Boutton, T.W. (2002). Alleviation of drought stress of chile ancho pepper (Capsicum annum L. cv. San Luis) with arbuscular mycorrhiza indigenous to Mexico. Sci Hortic, 92, 347-359.

https://doi.org/10.1016/S0304-4238(01)00293-X

Yooyongwech, S., Samphumphuang, T., Tisarum, R., Theerawitaya, C., Chaum, S. (2016). Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hort, 198, 107-117.

https://doi.org/10.1016/j.scienta.2015.11.002

Moradtalab, N., Roghieh, H., Nasser, A., Tobias, E. H., Günter, N. (2019). Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagusclarus) mitigate the adverse effects of drought stress on strawberry. Agronomy, 9, 41.

https://doi.org/10.3390/agronomy9010041

Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Douira, A. et al (2020). Arbuscular Mycorrhizal Fungi Mediate Drought Tolerance and Recovery in Two Contrasting Carob (Ceratonia siliqua L.) Ecotypes by Regulating Stomatal, Water Relations, and (In)Organic Adjustments. Plants, 9, 80.

https://doi.org/10.3390/plants9010080

Hu, D., Baskin, J.M., Baskin, C.C., Wang, Z., Zhang, S., Yang, X. et al (2019). Arbuscular mycorrhizal symbiosis and achene mucilage have independent functions in seedling growth of a desert shrub. J Plant Physiol, 232, 1-11.

https://doi.org/10.1016/j.jplph.2018.11.010

Auge, R.M. (2011). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza, 11, 3-42.

https://doi.org/10.1007/s005720100097

Mena-Violante, H.G., Ocampo-Jimenez, O., Dendooven, L., Martinez-Soto, G., Gonzalez-Castaneda, J., Davies, F.T. Jr., Olalde-Portugal, V. (2006). Arbuscular-mycorrhizal fungi enhance fruit growth and quality of Chile ancho (Capsicum annum L.cv. San Luis) plants exposed to drought. Mycorrhiza, 16, 261-267.

https://doi.org/10.1007/s00572-006-0043-z

Amiri, R., Ali, N., Nematollah, E., Mohammad, R. S. (2017). Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis, 73, 15-25.

https://doi.org/10.1007/s13199-016-0466-z

Bowles, T.M., Jackson, L.E., Cavagnaro, T.R. (2018). Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob Chang Biol, 24, 171-182.

https://doi.org/10.1111/gcb.13884

Burrows, R.L. and Ahmed, I. (2007). Fungicide seed treatments minimally affect arbuscular- mycorrhizal fungal (AMF) colonization of selected vegetable crops. J Biol Sci, 7, 417-420.

https://doi.org/10.3923/jbs.2007.417.420

Channabasava, A., Lakshman, H.C., Jorquera, M.A. (2015). Effect of fungicides on association of arbuscular mycorrhiza fungus Rhizophagusfasciculatus and growth of Proso millet (Panicum miliaceum L.). J Soil Sci Plant Nutr, 15, 35-45.

https://doi.org/10.4067/S0718-95162015005000004

Jin, H., Germida, J.J., Walley, F.L. (2013). Suppressive effects of seed-applied fungicides on arbuscular mycorrhizal fungi (AMF) differ with fungicide mode of action and AMF species. Applied Soil Ecol, 72, 22-30.

https://doi.org/10.1016/j.apsoil.2013.05.013

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Derechos de autor 2020 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...