revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

Archivos suplementarios

PDF. Pag, 103-114

Palabras clave

agua potable
agua residual
caroteno
lagos
pigmentos
Rhodotorula
rodotorulina
toruleno Carotenes
drinking water
lakes
pigment
Rhodotorula
rhodotorulin
torulene
wastewater

Cómo citar

Villota C., S. V. ., Vargas S, A. F. ., Martínez G, C. A. ., Caicedo B, L. D. ., Osorio C, E. ., & Ramírez-Castrillón, M. . (2020). Producción de carotenoides en levaduras nativas aisladas de sistemas acuáticos en Cali, Colombia. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(32), 103–114. https://doi.org/10.47499/revistaaccb.v1i32.215

Resumen

Introducción: Los carotenoides son fuente importante de actividades biológicas funcionales, tales como antioxidantes o antimicrobianas, además de tener gran impacto a nivel industrial, ya sea en cosmética o suplementación animal en acuacultura. Se han reportado varias moléculas novedosas a partir de aislamientos en Latinoamérica, principalmente en la Patagonia, Argentina. Sin embargo, no hay reportes en Colombia que evalúen la producción de carotenoides en levaduras nativas pigmentadas. Objetivo: Se evaluó la capacidad de producción de carotenoides en levaduras nativas aisladas de lagos, ríos y aguas residuales de la ciudad de Cali, Colombia. Materiales y métodos: Se caracterizaron 30 levaduras provenientes de dos colecciones. De estas se obtuvo su biomasa, rendimiento de carotenoides totales y producción de β-caroteno. Las cepas promisorias fueron identificadas secuenciando la región ITS1-5.8S-ITS2. Resultados: El mayor rendimiento en la extracción de pigmentos se obtuvo para las cepas P11A (84,36 ± 5,24 µg/g) y Rhodotorula paludigena CS13 (56,26 ± 7,08 µg/g), mientras que las concentraciones más altas de β-caroteno fueron 10,2 µg/mL (R. paludigena CS13) y 9,7 µg/mL (R. mucilaginosa/alborubescens P10A). La cinética de crecimiento y producción de pigmentos durante cinco días fue óptima para la cepa P11A, ya que hubo un aumento en el rendimiento de carotenoides totales 10 veces mayor (48 h: 109,62 µg/g, 120 h: 1403,10 µg/g). Conclusiones: En este estudio se encontró que levaduras aisladas de sistemas acuáticos son promisorias para la producción de pigmentos carotenoides (incluyendo β-caroteno), siendo su extracción y caracterización viable para futuros estudios biotecnológicos.

https://doi.org/10.47499/revistaaccb.v1i32.215

Citas

Carranco Jáuregui, M. E., Calvo Carrillo, M. de la C., Pérez-Gil Romo, F. (2011). Carotenoides y su función antioxidante: Revisión. Arch Latinoam Nutr, 61 (3), 233-241.

Meléndez-Martínez, A.J., Mapelli-Brahm, P. Hornero-Méndez, D., Vicario, I.M. (2019); Chapter 1. Structures, nomenclature and general chemistry of carotenoids and their esters. En Carotenoid Esters in Foods: Physical, Chemical and Biological Properties. Pp 1-50.

https://doi.org/10.1039/9781788015851-00001

Chen, P., Zhang, W., Wang, X., Zhao, K., Negi, D. S., Zhuo, L., Qi, M., Wang, X., & Zhang, X. (2015). Lycopene and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis. Medicine, 94 (33), e1260.

https://doi.org/10.1097/MD.0000000000001260

Meléndez-Martínez, A.J., Britton, G., Vicario, I.M. Heredia, F.J. (2007). Relationship between the color and the chemical structure of carotenoid pigments. Food Chem, 101 (3), 1145-1150.

https://doi.org/10.1016/j.foodchem.2006.03.015

Guerin, M., Huntley, M.E., Olaizola, M. (2003). Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol, 21 (5), 210-216.

https://doi.org/10.1016/S0167-7799(03)00078-7

Gutiérrez, M.S., Campusano, S., González, A.M., Gómez, M., Barahona, S., Sepúlveda, D., et al (2019). Sterol regulatory element-binding protein (Sre1) promotes the synthesis of carotenoids and sterols in Xanthophyllomyces dendrorhous. Front Microbiol, 10, 586.

https://doi.org/10.3389/fmicb.2019.00586

Morata, A., Loira, I., Heras, J.M., Callejo, M.J., Tesfaye, W., González, C., et al (2016). Yeast influence on the formation of stable pigments in red winemaking. Food Chem, 197, 686-691.

https://doi.org/10.1016/j.foodchem.2015.11.026

Vachali, P., Bhosale, P., Bernstein, P. S. (2012). Microbial carotenoids. Methods Mol Biol, 898, 41-59.

https://doi.org/10.1007/978-1-61779-918-1_2

Álvarez-Gómez, F., Korbee, N., Casas-Arrojo, V., Abdala-Díaz, R. T., Figueroa, F. L. (2019). UV photoprotection, cytotoxicity and immunology capacity of red algae extracts. Molecules, 24(2), 341.

https://doi.org/10.3390/molecules24020341

Chavez-Vivas, M., Caicedo, L.D., Castillo, J.E. (2019). Occurrence of β-lactamase-producing Gram-negative bacterial isolates in water sources in Cali City, Colombia. Int J Microbiol, 1375060, 1-8.

https://doi.org/10.1155/2019/1375060

Silva-Bedoya, L. M., Ramírez-Castrillón, M., Osorio-Cadavid, E. (2014). Yeast diversity associated to sediments and water from two Colombian artificial lakes. Braz J Microbiol, 45 (1), 135-142.

https://doi.org/10.1590/S1517-83822014005000035

Morillo, Y., Sánchez, T., Morante, N., Chávez, A. L., Morillo, A. C., Bolaños, A., et al (2012). Estudio preliminar de herencia del contenido de carotenoides en raíces de poblaciones segregantes de yuca (Manihot esculenta Crantz). Acta Agron, 61 (3), 253-264.

Miller, G. L. (1959). Modified DNS method for reducing sugars. Anal Chem, 31(3), 4

https://doi.org/10.1021/ac60147a030

Vu, D., Groenewald, M., Szöke, S., Cardinali, G., Eberhardt, U., Stielow, B., et al (2016). DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol, 85, 91-105.

https://doi.org/10.1016/j.simyco.2016.11.007

Kot, A. M., Błażejak, S., Gientka, I., Kieliszek, M., Bryś, J. (2018). Torulene and torularhodin: "new" fungal carotenoids for industry? Microb Cell Fact, 17, 49.

https://doi.org/10.1186/s12934-018-0893-z

Derx, H.G. (1930). Etude sur les Sporobolomycetes. Ann Mycol, 28, 1-23.

Kurtzman, C., Fell, J. W., Boekhout, T., (2011). The yeasts: a taxonomic study. Ed. Elsevier. Pp 2354.

Wang, Q. M., Yurkov, A. M., Goker, M., Lumbsch, H. T., Leavitt, S. D., et al (2015). Phylogenetic classification of yeasts and related taxa within Pucciniomycotina. Stud Mycol, 81, 149-189.

https://doi.org/10.1016/j.simyco.2015.12.002

Manimala, M. R. A., Murugesan, R. (2017). Studies on carotenoid pigment production by yeast Rhodotorula mucilaginosa using cheap materials of agro-industrial origin. Pharma Innovation, 6(1), 80-82.

Hong, Gyu, S., Chun, J., Nam, J. S., Park, Y. D., Bae, K. S. (2000). Phylogenetic analysis of genus Sporobolomyces based on partial sequences of 26S rDNA. J Microbiol Biotechnol, 10 (3), 363-366.

Rodríguez Iza, E. L. (2016). Cultivo de la microalga Coenochloris sp. con fracción soluble de papa (Solanum phureja L) para la obtención de pigmentos (Carotenoides). Pregrado Universidad Politecnica Salesiana, Quito.

Elsanhoty, R. M., Abd El-Razink, M. M., Al-Turki, A. I. (2017). Production of carotenoids from Rhodotorula mucilaginosa and their applications as colorant agent in sweet candy. J Food Agric Environ, 15 (2) 21-26

Montero-Lobato, Z., Ramos-Merchante, A., Fuentes, J. L., Sayago, A., Fernández-Recamales, Á., Martínez-Espinosa, R. M., et al (2018). Optimization of growth and carotenoid production by Haloferax mediterranei using response surface methodology. Mar Drugs, 16 (10), 372.

https://doi.org/10.3390/md16100372

Martínez, J. M., Delso, C., Angulo, J., Álvarez, I., Raso, J. (2018). Pulsed electric field-assisted extraction of carotenoids from fresh biomass of Rhodotorula glutinis. Innov Food Sci Emerg Technol, 47, 421-427.

https://doi.org/10.1016/j.ifset.2018.04.012

Issa, S., Alhajali, A., Alamir, L. (2016). Improving carotenoid pigments production in Rhodotorula mucilaginosa using UV irradiation. Int Food Res J, 23 (2), 873-878.

Sumerta, I. N., Yuliani, Y., Kanti, A. (2019). Determining the potential indigenous red-yeasts producing β-carotene and their phylogenetic relationship. J Microbia lSyst Biotech , 1 (2), 27-33.

https://doi.org/10.37604/jmsb.v1i2.31

Libkind, D., van Broock, M. (2006). Biomass and carotenoid pigment production by patagonian native yeasts. World J Microb Biot, 22 (7), 687-692.

https://doi.org/10.1007/s11274-005-9091-3

Bhosale, P., Gadre, R. (2001). Production of β-carotene by a mutant of Rhodotorula glutinis. Appl Microbiol Biotechnol, 55 (4), 423-427.

https://doi.org/10.1007/s002530000570

Aksu, Z., Eren, A. T. (2005). Carotenoids production by the yeast Rhodotorula mucilaginosa: use of agricultural wastes as a carbon source. Process Biochem, 40 (9), 2985-2991.

https://doi.org/10.1016/j.procbio.2005.01.011

Saenge, C., Cheirsilp, B., Suksaroge, T. T., Bourtoom, T. (2011). Potential use of oleaginous red yeast Rhodotorula glutinis for the bioconversion of crude glycerol from biodiesel plant to lipids and carotenoids. Process Biochem, 46(1), 210-218.

https://doi.org/10.1016/j.procbio.2010.08.009

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Derechos de autor 2020 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...