revista accb, artículos académicos, artículos. biología, ciencias, ACCB, biologicas

##plugins.themes.healthSciences.article.supplementaryFiles##

PDF. Pag, 93-104

Palabras clave

plantas aromáticas
péptidos
SARS-CoV-2
interacción molecular Aromatic plants
peptides
SARS-CoV-2
molecular docking

Cómo citar

Delgado-Betancourt, A. L. ., Zuñiga-Lopez, M. H. ., & García-López, J. P. . (2022). Análisis in silico de la inmunogenicidad e interacción molecular de péptidos de plantas aromáticas con SARS-CoV-2. REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS, 1(34), 93–104. https://doi.org/10.47499/revistaaccb.v1i34.264

Resumen

SARS-CoV-2 es un coronavirus de ARN que causa infecciones respiratorias como la actual pandemia de COVID-19. Los sistemas de salud combaten esta infección con cuidados paliativos; sin embargo, existen pocos tratamientos específicos para este patógeno. Este contexto representa la posibilidad de buscar tratamientos alternativos, como el uso de moléculas naturales. El objetivo de este estudio fue determinar in silico la interacción de péptidos de plantas aromáticas con proteínas específicas de SARS-CoV-2 que no comprometan la respuesta inmune. Se procesaron quinientos ochenta y tres péptidos con menos de 30 aminoácidos de Thymus vulgaris L., Cymbopogon citratus, Salvia officinalis, Ocimum basilicum L y Zingiber officinale. La metodología aplicó filtros de acuerdo a los más altos puntajes de docking molecular para encontrar 20 péptidos por cada planta. Los péptidos registraron interacción molecular fuerte de los sitios activos de las proteínas Spike RBD, S2 y Nsp4, empleando una energía de menos de –150 kcal/mol. La proteína Nsp4 mostró la mayor interacción con todas las especies. El 35% y el 65% de estos péptidos se registraron con baja activación de la respuesta inmune a través de la antigenicidad, puntuación inferior a 0,5 y ausencia de alergenicidad. Estos resultados indican el uso de moléculas de origen vegetal que pueden implementarse en el consumo para combatir la replicación viral del SARS-CoV-2.

https://doi.org/10.47499/revistaaccb.v1i34.264

Citas

Joshi A, Sunil Krishnan G, Kaushik V. Molecular docking and simulation investigation: effect of beta-sesquiphellandrene with ionic integration on SARS-CoV2 and SFTS viruses. J Genet Eng Biotechnol. 2020; 18(1):1-8.

https://doi.org/10.1186/s43141-020-00095-x

Mohamadian M, Chiti H, Shoghli A, Biglari S, Parsamanesh N, Esmaeilzadeh A. COVID-19: Virology, biology and novel laboratory diagnosis. J Gene Med. 2021; 23(2):e3303.

https://doi.org/10.1002/jgm.3303

Vilas Boas LCP, Campos ML, Berlanda RLA, de Carvalho Neves N, Franco OL. Antiviral peptides as promising therapeutic drugs. Cell Mol Life Sci. 2019; 76(18):3525-42.

https://doi.org/10.1007/s00018-019-03138-w

Amponsa-Achiano K, Frimpong JA, Barradas D, Bandoh DA, Kenu E. Leveraging Lessons Learned from Yellow Fever and Polio Immunization Campaigns during COVID-19 Pandemic, Ghana, 2021. Emerg Infect Dis. 2022; 28(13):S232-S237.

https://doi.org/10.3201/eid2813.221044

Calina D, Docea AO, Petrakis D, Egorov AM, Ishmukhametov AA, Gabibov AG, et al. Towards effective COVID‑19 vaccines: Updates, perspectives and challenges (Review). Int J Mol Med. 2020; 46(1):3-16.

https://doi.org/10.3892/ijmm.2020.4596

Sharma A, Khanna S, Kaur G, Singh I. Medicinal plants and their components for wound healing applications. Futur J Pharm Sci 2021 71. 2021; 7(1):1-13.

https://doi.org/10.1186/s43094-021-00202-w

Chen K, Wu W, Hou X, Yang Q, Li Z. A review: Antimicrobial properties of several medicinal plants widely used in Traditional Chinese Medicine. Food Qual Saf. 2021; 5:1-22.

https://doi.org/10.1155/2021/6652780

Tang SS, Prodhan ZH, Biswas SK, Le CF, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification. Phytochemistry. 2018; 154:94-105.

https://doi.org/10.1016/j.phytochem.2018.07.002

Patil SM, Ramu R, Shirahatti PS, Shivamallu C, Amachawadi RG. A systematic review on ethnopharmacology, phytochemistry and pharmacological aspects of Thymus vulgaris Linn. Heliyon. 2021; 7(5):e07054.

https://doi.org/10.1016/j.heliyon.2021.e07054

Abou Baker DH, Amarowicz R, Kandeil A, Ali MA, Ibrahim EA. Antiviral activity of Lavandula angustifolia L. and Salvia officinalis L. essential oils against avian influenza H5N1 virus. J Agric Food Res. 2021; 4:100135.

https://doi.org/10.1016/j.jafr.2021.100135

Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020 271. 2020; 27(1):149-68.

https://doi.org/10.1007/s10989-020-10072-0

Bruckdorfer T, Marder O, Albericio F. From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol. 2004; 5(1):29-43.

https://doi.org/10.2174/1389201043489620

Lien S, Lowman HB. Therapeutic peptides. Trends Biotechnol. 2003; 21(12):556-62.

https://doi.org/10.1016/j.tibtech.2003.10.005

Mehmood A, Khan S, Khan S, Ahmed S, Ali A, xue M, et al. In silico analysis of quranic and prophetic medicinals plants for the treatment of infectious viral diseases including corona virus. Saudi J Biol Sci. 2021; 28(5):3137-51.

https://doi.org/10.1016/j.sjbs.2021.02.058

Shah B, Modi P, Sagar SR. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci. 2020; 252:117652.

https://doi.org/10.1016/j.lfs.2020.117652

Tamay-Cach F, Villa-Tanaca ML, Trujillo-Ferrara JG, Alemán-González-Duhart D, Quintana-Pérez JC, González-Ramírez IA, Correa-Basurto J. In Silico Studies Most Employed in the Discovery of New Antimicrobial Agents. Curr Med Chem. 2016; 23(29):3360-3373.

https://doi.org/10.2174/0929867323666160210141912

Mulvenna J, Wang C, Craik C. CyBase: a database of cyclic protein sequence and structure, Nucleic Acids Research, 2006; 34,(1):D192-D194.

https://doi.org/10.1093/nar/gkj005

Lamiable A, Thévenet P, Rey J, Vavrusa M, Derreumaux P, Tufféry P. PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex, Nucleic Acids Research. 2016; 44,(w1):W449-W454.

https://doi.org/10.1093/nar/gkw329

Kong R, Yang G, Xue R, Liu M, Wang F, Hu J, et al. COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19, Bioinformatics. 2020; 36,(20):5109-5111.

https://doi.org/10.1093/bioinformatics/btaa645

Hall-Swan S, Devaurs D, Rigo M, Antunes D, Kavraki L, Zanatta G. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Computers in Biology and Medicine. 2021; (139):104943

https://doi.org/10.1016/j.compbiomed.2021.104943

Wani AR, Yadav K, Khursheed A, Rather MA. An updated and comprehensive review of the antiviral potential of essential oils and their chemical constituents with special focus on their mechanism of action against various influenza and coronaviruses. Microb Pathog. 2021; 152:104620.

https://doi.org/10.1016/j.micpath.2020.104620

Bokesch HR, Pannell LK, Cochran PK, Ii RCS, Mckee TC, Boyd MR. A Novel Anti-HIV Macrocyclic Peptide from Palicourea condensata. 2001; 249-50.

https://doi.org/10.1021/np000372l

Hiu KOUEIC. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. 1999; 96:8913-8.

https://doi.org/10.1073/pnas.96.16.8913

Panya A, Yongpitakwattana P, Budchart P, Sawasdee N, Krobthong S, Paemanee A, et al. Novel bioactive peptides demonstrating anti-dengue virus activity isolated from the Asian medicinal plant Acacia Catechu. Chem Biol Drug Des. 2019; 93(2):100-9.

https://doi.org/10.1111/cbdd.13400

Hu E, Wang D, Chen J, Tao X. Novel cyclotides from hedyotis diffusa induce apoptosis and inhibit proliferation and migration of prostate cancer cells. Int J Clin Exp Med. 2015; 8(3):4059-65.

Kalkhoran S, Benowitz NL, Rigotti NA. Prevention and Treatment of Tobacco Use: JACC Health Promotion Series. J Am Coll Cardiol. 2018; 28;72(9):1030-1045.

https://doi.org/10.1016/j.jacc.2018.06.036

Auvin-Guette C, Baraguey C, Blond A, Xavier HS, Pousset JL, Bodo B. Pohlianins A, B and C, cyclic peptides from the latex of Jatropha pohliana ssp. molissima. Tetrahedron. 1999; 55(38):11495-510.

https://doi.org/10.1016/S0040-4020(99)00660-2

Pinto MEF, Batista JM, Koehbach J, Gaur P, Sharma A, Nakabashi M, et al. Ribifolin, an orbitide from jatropha ribifolia, and its potential antimalarial activity. J Nat Prod. 2015; 78(3):374-80.

https://doi.org/10.1021/np5007668

Jack HW, Tzi BN. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides. 2005; 26(7):1120-6.

https://doi.org/10.1016/j.peptides.2005.01.003

Pränting M, Lööv C, Burman R, Göransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gram-negative bacteria. J Antimicrob Chemother. 2010; 65(9):1964-71.

https://doi.org/10.1093/jac/dkq220

Ireland DC, Wang CKL, Wilson JA, Gustafson KR, Craik DJ. Cyclotides as natural anti-HIV agents. Biopolym - Pept Sci Sect. 2008; 90(1):51-60.

https://doi.org/10.1002/bip.20886

Camargo Filho I, Cortez DAG, Ueda-Nakamura T, Nakamura C V., Dias Filho BP. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine. 2008; 15(3):202-8.

https://doi.org/10.1016/j.phymed.2007.07.059

Gustafson KR, Walton LK, Sowder RC, Johnson DG, Pannell LK, Cardellina JH, et al. New circulin macrocyclic polypeptides from Chassalia parvifolia. J Nat Prod. 2000; 63(2):176-8.

https://doi.org/10.1021/np990432r

Hallock YF, Sowder RC, Pannell LK, Hughes CB, Johnson DG, Gulakowski R, et al. Cycloviolins A-D, anti-HIV macrocyclic peptides from Leonia cymosa. J Org Chem. 2000; 65(1):124-8.

https://doi.org/10.1021/jo990952r

Zou XG, Hu JN, Li J, Yang JY, Du YX, Yu YF, et al. iCellular uptake of [1-9-NαC]-linusorb B2 and [1-9-NαC]-linusorb B3 isolated from flaxseed, and their antitumor activities in human gastric SGC-7901 cells. J Funct Foods. 2018; 48:692-703.

https://doi.org/10.1016/j.jff.2018.08.008

Chen B, Colgrave ML, Daly NL, Rosengren KJ, Gustafson KR, Craik DJ. Isolation and characterization of novel cyclotides from Viola hederaceae: Solution structure and anti-HIV activity of vhl-1, a leaf-specific expressed cyclotide. J Biol Chem. 2005; 280(23):22395-405.

https://doi.org/10.1074/jbc.M501737200

Baraguey C, Auvin-Guette C, Blond A, Cavelier F, Lezenven F, Pousset JL, et al. Isolation, structure and synthesis of chevalierins A, B and C, cyclic peptides from the latex of Jatropha chevalieri. J Chem Soc - Perkin Trans 1. 1998; (18):3033.

https://doi.org/10.1039/a804003f

Daly NL, Clark RJ, Plan MR, Craik DJ. Kalata B8, a novel antiviral circular protein, exhibits conformational flexibility in the cystine knot motif. Biochem J. 2006; 393(3):619-26.

https://doi.org/10.1042/BJ20051371

Maupetit J, Derreumaux P, Tufféry P. A fast method for large-scale de novo peptide and miniprotein structure prediction. J Comput Chem. 2010; 31(4):726-38.

https://doi.org/10.1002/jcc.21365

Kong R, Yang G, Xue R, Liu M, Wang F, Hu J, et al. COVID-19 Docking Server: a meta server for docking small molecules, peptides and antibodies against potential targets of COVID-19. Bioinformatics. 2020; 36(20):5109-11.

https://doi.org/10.1093/bioinformatics/btaa645

Santos-Silva CA dos, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, et al. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era. Bioinform Biol Insights. 2020; 2;14:1177932220952739.

https://doi.org/10.1177/1177932220952739

Hasan A, Paray BA, Hussain A, Qadir FA, Attar F, Aziz FM, et al. A review on the cleavage priming of the spike protein on coronavirus by angiotensin-converting enzyme-2 and furin. J Biomol Struct Dyn. 2021; 39(8):3025-3033.

https://doi.org/10.1080/07391102.2020.1754293

Yan, W., Zheng, Y., Zeng, X. et al. Structural biology of SARS-CoV-2: open the door for novel therapies. Sig Transduct Target Ther. 2022; 7(26). DOI: 10.1038/s41392-022-00884-5

https://doi.org/10.1038/s41392-022-00884-5

Cheng J, Randall AZ, Sweredoski MJ, Baldi P. SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res. 2005; 33(Web Server issue).

https://doi.org/10.1093/nar/gki396

Dimitrov I, Bangov I, Flower DR, Doytchinova I. AllerTOP v.2--a server for in silico prediction of allergens. J Mol Model. 2014; 20(6).

https://doi.org/10.1007/s00894-014-2278-5

Wong FC, Ong JH, Kumar DT, Chai TT. In Silico Identification of Multi-target Anti-SARS-CoV-2 Peptides from Quinoa Seed Proteins. Int J Pept Res Ther 2021 273. 2021; 27(3):1837-47.

https://doi.org/10.1007/s10989-021-10214-y

Türkmenoğlu A, Özmen D. Allergenic components, biocides, and analysis techniques of some essential oils used in food products. J Food Sci. 2021; 86(6):2225-41.

https://doi.org/10.1111/1750-3841.15753

Mishra NP, Das SS, Yadav S, Khan W, Afzal M, Alarifi A, et al. Global impacts of pre- and post-COVID-19 pandemic: Focus on socio-economic consequences. Sens Int. 2020; 1:100042.

https://doi.org/10.1016/j.sintl.2020.100042

Ma H, Zhu J, Liu J, Zhang X, Liu Y, Yang Q. Hospital biosecurity capacitation: Analysis and recommendations for the prevention and control of COVID-19. J Biosaf Biosecur. 2020; 2(1):5-9.

https://doi.org/10.1016/j.jobb.2020.05.001

Gilissen J, Pivodic L, Unroe KT, Van den Block L. International COVID-19 Palliative Care Guidance for Nursing Homes Leaves Key Themes Unaddressed. J Pain Symptom Manage. 2020; 60(2):e56-e69.

https://doi.org/10.1016/j.jpainsymman.2020.04.151

Yu WL, Toh HS, Liao CT, Chang WT. A Double-Edged Sword-Cardiovascular Concerns of Potential Anti-COVID-19 Drugs. Cardiovasc Drugs Ther. 2021; 35(2):205-214.

https://doi.org/10.1007/s10557-020-07024-7

Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ. 2020; 27;192(17):E450-E453.

https://doi.org/10.1503/cmaj.200528

Almeida-Espinosa A, Sarmiento-Ardila JA. COVID-19: implications of SARS-CoV-2 in Colombia. Gac Med Mex. 2020; 156(4):334-338.

https://doi.org/10.24875/GMM.M20000409

Huang J, Tao G, Liu J, Cai J, Huang Z, Chen JX. Current Prevention of COVID-19: Natural Products and Herbal Medicine. Front Pharmacol. 2020; 16;11:588508.

https://doi.org/10.3389/fphar.2020.588508

Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne). 2020; 7;7:444.

https://doi.org/10.3389/fmed.2020.00444

Ashaolu TJ, Nawaz A, Walayat N, Khalifa I. Potential "biopeptidal" therapeutics for severe respiratory syndrome coronaviruses: a review of antiviral peptides, viral mechanisms, and prospective needs. Appl Microbiol Biotechnol. 2021; 105(9):3457-3470.

https://doi.org/10.1007/s00253-021-11267-1

Arimura G, Kost C, Boland W. Herbivore-induced, indirect plant defences. Biochim Biophys Acta. 2005; 15;1734(2):91-111.

https://doi.org/10.1016/j.bbalip.2005.03.001

Schnitzler P, Nolkemper S, Stintzing FC, Reichling J. Comparative in vitro study on the anti-herpetic effect of phytochemically characterized aqueous and ethanolic extracts of Salvia officinalis grown at two different locations. Phytomedicine. 2008; 15(1-2):62-70.

https://doi.org/10.1016/j.phymed.2007.11.013

Terstappen GC, Reggiani A. In silico research in drug discovery. Trends Pharmacol Sci. 2001; 22(1):23-6.

https://doi.org/10.1016/S0165-6147(00)01584-4

Kim JH, Park YI, Hur M, Park WT, Moon YH, Koo SC, et al. The inhibitory activity of methoxyl flavonoids derived from Inula britannica flowers on SARS-CoV-2 3CLpro. Int J Biol Macromol. 2022; 1;222(Pt B):2098-2104.

https://doi.org/10.1016/j.ijbiomac.2022.10.008

Zhang G., Pomplun S., Loftis A.R., Tan X., Loas A., Pentelute B.L. Investigation of ACE2 N-terminal fragments binding to SARS-CoV-2 spike RBD. bioRxiv. 2020. . https://doi.org/10.1101/2020.03.19.999318

https://doi.org/10.1101/2020.03.19.999318

Romano M., Ruggiero A., Squeglia F., Berisio R. An engineered stable mini-protein to plug SARS-Cov-2 Spikes. bioRxiv. 2020. https://doi.org/10.1101/2020.04.29.067728

https://doi.org/10.1101/2020.04.29.067728

Mahmud S, Biswas S, Kumar Paul G, Mita MA, Afrose S, Robiul Hasan M, et al. Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. Arab J Chem. 2021; 14(9):103315.

https://doi.org/10.1016/j.arabjc.2021.103315

Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012; 4(6):1011-33.

https://doi.org/10.3390/v4061011

Zahran EM, Albohy A, Khalil A, Ibrahim AH, Ahmed HA, El-Hossary EM, et al. Bioactivity Potential of Marine Natural Products from Scleractinia-Associated Microbes and In Silico Anti-SARS-COV-2 Evaluation. Mar Drugs. 2020; 16;18(12):645.

https://doi.org/10.3390/md18120645

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.

Derechos de autor 2022 REVISTA DE LA ASOCIACION COLOMBIANA DE CIENCIAS BIOLOGICAS

Descargas

Los datos de descargas todavía no están disponibles.