Page 74 - ACCB 2020
P. 74

Revista de la Asociación Colombiana de Ciencias Biológicas
            issn impreso 0120-4173, issn en línea 2500-7459



                       AMF inhibited Soybean Red crown Rot: from fi eld study to plant Defense-Related Gene Expression
                       Analysis. PloS ONE, 7, 1-10.
                    68.  Bulgarelli, R.G., Marcos, F.C.C., Ribeiro, R.V., Andrade, S.A.L.D. (2017). Mycorrhizae enhance ni-
                       trogen fi xation and photosynthesis in phosphorus-starved soybean (Glycine max L. Merill). Environ
                       Exp Bot, 140, 26-33.
                    69.  Bagyaraj, D.J. and Menge, J.A. (1978).  Interaction between a VA mycorrhiza and Azotobacter& their
                       effects on rhizosphere microfl ora & plant growth. New Phytol, 80, 567-573.
                    70.  Ho, I.and Trappe, J.M. (1979). Interaction of VA-mycorrhizal fungus and a free- living nitrogen fi xing
                       bacterium on growth of tall fescue. Abst. 4 N.Am. Conf. Mycorrhizae. Fort Collins, Colorado.
                                                         th
                    71.  Manjunath, A., Mohan, R., Bagyaraj, D.J. (1981). Interaction between Beijerinckia mobilis, Asper-
                       gillus niger and Glomus fasciculatus and their effects on growth of onion. New Phytol. 87, 723-727.
                    72.  Khan, M.S., Zaidi, A., Wani, P.A. (2007). Role of phosphate-solubilizing microorganisms in suataina-
                       ble agriculture- A review.  Agron Sustain Dev, 27, 29-43.
                    73.  Tilak, K.V.B.R., Pal, K.K., Dey, R. (2010).  Microbes for Sustanable Agriculture. IK International
                       Publishing House Pvt Ltd, New Delhi.
                    74.  Maaloum, S. El., Elabed, A., Talibi, Z. El. A., Meddich, A., Maltouf, A. F., Douira, A., et al (2020).
                       Effect of arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria consortia associated with
                       phospho-compost on phosphorus solubilization and growth of tomato seedlings (Solanum lycopersi-
                       cum L.). Commun Soil Sci Plan, 51, 622-634.
                    75.  Bi, Y., Xiao, Li., Liu, R. (2019). Response of arbuscular mycorrhizal fungi and phosphorus solubilizing
                       bacteria to remediation abandoned solid waste of coal mine. Int J Coal Sci Technol, 6, 603-610.
                    76.  Dar, G.H. (2010). Soil Microbiology and Biochemistry, New India Publishing Agency, New Delhi.
                    77.  Singh,  S.  and    Kapoor,  K.K.  (1999).  Inoculation  with  phosphate-solubilizing  microorganisms  and
                       a vesicular-arbuscular mycorrhizal fungus improves dry matter yield and nutrient uptake by wheat
                       grown in a sandy soil. Biol Fertil Soils, 28, 139-144.
                    78.  Giovannini, L., Palla, M., Agnolucci, M., Avio, L., Sbrana, C., Turrini, A. et al (2020). Arbuscular
                       mycorrhizal fungi and associated microbiota as plant biostimulants: Research strategies for the selec-
                       tion of the best performing inocula. Agronomy, 10, 106.
                    79.  Abdel-Fattah, G.M. and  Mohamedin, A.H. (2000). Interactions between a vesicular-arbuscular myco-
                       rrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants
                       grown in soil amended with chitin of brawn scales. Biol Fertil Soils, 32, 401-409.
                    80.  Mayo, K., Davis, R.E., Motta, J. (1986).  Stimulation of germination of spores of Glomus vesiforme by
                       spore-associated bacteria. Mycologia, 78, 426-431.
                    81.  Xavier, L.J.C. and  Germida, J.J. (2003).  Bacteria associated with Glomus clarum spores infl uence
                       mycorrhizal activity. Soil Biol Biochem,35, 471-478.
                    82.  Giovannetti, M., Avio, L., Sbrana, C. (2010).  Fungal spore germination and pre-symbiotic mycelial
                       growth-physiological and genetic aspects, in Arbuscular Mycorrhizas: Physiology and Function. pp
                       3-32.
                    83.  Ravnskov, S. and  Jakobsen, I. (1999).   Effects of Pseudomonas fl uorescens DF57 on growth and P
                       uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza, 8, 329-334.
                    84.  Battini, F., Gronlund, M., Agnolucci, M., Giovannetti, M., Jakobsen, I. (2017).  Facilitation of phos-
                       phorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep, 7, 4686.
                    85.  Turrini, A., Bedini, A., Loor, M. B., Santini, G., Sbrana, C., Giovannetti, M., et al (2018). Local diver-
                       sity of native arbuscular mycorrhizal symbionts differentially affects growth and nutrition of three crop
                       plant species. Bio lFertil Soils, 54, 203–217.
                    86.  O’ Bannon, J.H., Inserra, R.N., Nemec, S., Vovlas, N. (1979).  The infl uence of Glomus mosseae on
                       Tylenchulussemipenetrans-infected and uninfected Citrus lemon seedlings. J Nematol, 11, 247-250.
                    87.  Bodker, L., Kjoller, R., Rosendahl, S. (1998). Effect of phosphate and the arbuscular mycorrhizal fun-
                       gus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomy-
                       ces euteiches. Mycorrhiza, 8, 169-174.
                    88.  Bodker, L., Kjoller, R., Kristensen, K., Rosendahl, S. (2002). Interactions between indigenous arbuscu-
                       lar mycorrhizal fungi and Aphanomyces euteiches in fi eld-grown pea. Mycorrhiza, 12, 7-12.
                    89.  Filion, M., St-Arnaud, M., Jabaji-Hare, S.H. (2003). Quantifi cation of Fusarium solani f. Sp phaseoli
                       in mycorrhizal beans plants and surrounding mycorrhizosphere soil using real-time polymerase chain

            74
                                                                                  Rev. Asoc. Col. Cienc.(Col.), 2020; 32: 63-76
   69   70   71   72   73   74   75   76   77   78   79