Page 101 - ACCB 2020
P. 101

Proteínas salivales y diversidad trófi ca en murciélagos tropicales. Jiménez  et al




                    21.  Taylor RJ, Oneill MG. Summer activity patterns of insectivorous bats and their prey in tasmania. Wildl
                       Res. 1988; 15(5): 533-39.
                    22.  Hayes JP. Temporal Variation in Activity of Bats and the Design of Echolocation-Monitoring Studies.
                       J Mammal. 1997; 78(2): 514-24.
                    23.  Díaz MM, Solari S, Aguirre LF, Aguiar LMS, Bárquez RM. Clave de identifi cación de los murciélagos
                       de Sudamérica. Publicación Nº 2, PCMA (Programa de Conservación de los Murciélagos de Argentina.
                       2016; 160 pp.
                    24.  Dominique PC. Feeding strategy and activity budget of the frugivorous bat Carollia perspicillata (Chi-
                       roptera: Phyllostomidae) in French Guiana. J Trop Ecol. 1991; 7: 243-56.
                    25.  Fleming TH, Nuñez RA, Sternberg LD. Seasonal changes in the diets of migrant and non-migrant nec-
                       tarivorous bats as revealed by carbon stable isotope analysis. Oecologia. 1993; 94(1): 72–75.
                    26.  Kwiecinski GG. Phyllostomus discolor. Mamm. Species. 2006; 801: 1–11.
                    27.  Hoofer SR, Solari S, Larsen PA, Bradley RD, Baker RJ. Phylogenetics of the fruit-eating bats (Phy-
                       llostomidae: Artibeina) inferred from mitocondrial DNA sequences. Ocass Pap Mus Tex Tech Univ.
                       2008; 277:1-16.
                    28.  Aroca AK, González LA, Hurtado MA, Murillo-García OE. Preferencia en la dieta de murciélagos
                       frugívoros (Phyllostomidae) en un fragmento de bosque seco tropical. Rev. Cienc.. 2016; 20: 139-46.
                    29.  Kraker-Castañeda C, Cajas-Castillo JO, Lou S. Opportunistic feeding by the little yellow-shouldered
                       bat Sturnira lilium (Phyllostomidae, Stenodermatinae) in northern Guatemala: a comparative appro-
                       ach. Mammalia. 2016; 80(3): 349-52.
                    30.  Castaño JH, Carranza JA, Pérez-Torres J. Diet and trophic structure in assemblages of montane frugi-
                       vorous phyllostomid bats. Acta Oecol. 2018; 91: 81–90.
                    31.  Cartwright T, Hawkey C. Activation of the blood fi brinolytic mechanism in birds by saliva of the vam-
                       pire bat (Diaemus youngi). J Physiol. 1969; 201: 45-46.
                    32.  Cavalheiro EA.  The pilocarpine model of epilepsy. Ital J Neurol Sci. 1995; 16(1-2): 33–37.
                    33.  Cartwright T. The plasminogen activator of vampire bat saliva. Blood. 1974; 43(3): 317-26.
                    34.  Thomadaki K, Helmerhorst EJ, Tian N, Sun X, Siqueira WL, Walt DR, et al. Whole-saliva proteolysis
                       and its impact on salivary diagnostics. J Dent Res. 2011; 90(11): 1325–30.
                    35.  Wu F, Wang M. Extraction of proteins for sodium dodecyl sulfate-polyacrylamide gel electrophoresis
                       from protease-rich plant tissues. Anal Biochem. 1984; 139(1): 100–103.
                    36.  Lawler J. The structural and functional properties of thrombospondin. Blood. 1986; 67: 1197-1209.
                    37.  Harmon LJ, Losos JB, Davies JT, Gillespie RG, Gittleman JL, Jennings BW, et al. Early bursts of body
                       size and shape evolution are rare in comparative data. Evolution. 2010; 64: 2385–96.
                    38.  Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999; 401: 877–84.
                    39.  Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: Investigating evolutionary radia-
                       tions. Bioinformatics. 2008; 24: 129–31.
                    40.  Motani R, Schmitz L. Phylogenetic versus functional signals in the evolution of form-function rela-
                       tionships in terrestrial vision. Evolution. 2011; 65(8): 2245–57.
                    41.  Agnarsson I, Zambrana-Torrelio CM, Flores-Saldana NP, May-Collado LJ. A time-calibrated species-
                       level phylogeny of bats (Chiroptera, Mammalia). PLoS Curr. 2011. doi: 10.1371/currents.RRN1212
                    42.  Ho LST, Ane C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst
                       Biol. 2014; 63(3):397-408.
                    43.  Gerhold P, Ribeiro EMS, Santos BA, Sarapuu J, Tabarelli M, Wirth R, et al. Phylogenetic signal in leaf-
                       cutting ant diet in the fragmented Atlantic rain forest. J Trop Ecol. 2019; 35(3): 144–47.
                    44.  Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theo-
                       retic approach: Second edition. New York: Springer-Verlag; 2002. 488 p.
                    45.  Shimada T. Salivary proteins as a defense against dietary tannins. J Chem Ecol. 2006; 32(6): 1149–63.
                    46.  Manconi B, Castagnola M, Cabras T, Olianas A, Vitali A, Desiderio C, et al. The intriguing heteroge-
                       neity of human salivary proline-rich proteins. J Proteomics. 2016; 134: 47–56.
                    47.  Zucker WV. Tannins: does structure determine function? An ecological perspective. Am Nat. 1983;
                       121: 335–65.
                    48.  Sazima I, Sazima M. Solitary and group foraging: two fl ower-visiting patterns of the lesser spear-nosed
                       bat Phyllostomus discolor. Biotropica. 1977; 9(3): 213-15.



                                                                                                            101
            Rev. Asoc. Col. Cienc.(Col.), 2020; 32: 89-102.
   96   97   98   99   100   101   102   103   104   105   106